Do you want to publish a course? Click here

Optical spin-wave storage in a solid-state hybridized electron-nuclear spin ensemble

89   0   0.0 ( 0 )
 Added by Alexey Tiranov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solid-state impurity spins with optical control are currently investigated for quantum networks and repeaters. Among these, rare-earth-ion doped crystals are promising as quantum memories for light, with potentially long storage time, high multimode capacity, and high bandwidth. However, with spins there is often a tradeoff between bandwidth, which favors electronic spin, and memory time, which favors nuclear spins. Here, we present optical storage experiments using highly hybridized electron-nuclear hyperfine states in $^{171}$Yb$^{3+}$:Y$_2$SiO$_5$, where the hybridization can potentially offer both long storage time and high bandwidth. We reach a storage time of 1.2 ms and an optical storage bandwidth of 10 MHz that is currently only limited by the Rabi frequency of the optical control pulses. The memory efficiency in this proof-of-principle demonstration was about 3%. The experiment constitutes the first optical storage using spin states in any rare-earth ion with electronic spin. These results pave the way for rare-earth based quantum memories with high bandwidth, long storage time and high multimode capacity, a key resource for quantum repeaters.



rate research

Read More

145 - N. Timoney , I. Usmani , P. Jobez 2013
A long-lived quantum memory is a firm requirement for implementing a quantum repeater scheme. Recent progress in solid-state rare-earth-ion-doped systems justifies their status as very strong candidates for such systems. Nonetheless an optical memory based on spin-wave storage at the single-photon-level has not been shown in such a system to date, which is crucial for achieving the long storage times required for quantum repeaters. In this letter we show that it is possible to execute a complete atomic frequency comb (AFC) scheme, including spin-wave storage, with weak coherent pulses of $bar{n} = 2.5 pm 0.6$ photons per pulse. We discuss in detail the experimental steps required to obtain this result and demonstrate the coherence of a stored time-bin pulse. We show a noise level of $(7.1 pm 2.3)10^{-3}$ photons per mode during storage, this relatively low-noise level paves the way for future quantum optics experiments using spin-waves in rare-earth-doped crystals.
Solid-state nuclear spins surrounding individual, optically addressable qubits provide a crucial resource for quantum networks, computation and simulation. While hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence, developing coherent quantum systems in nuclear spin-rich hosts enables exploration of a much broader range of materials for quantum information applications. The collective modes of these dense nuclear spin ensembles provide a natural basis for quantum storage, however, utilizing them as a resource for single spin qubits has thus far remained elusive. Here, by using a highly coherent, optically addressed 171Yb3+ qubit doped into a nuclear spin-rich yttrium orthovanadate crystal, we develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51V5+ lattice ions. Via a dynamically-engineered spin exchange interaction, we polarise this nuclear spin ensemble, generate collective spin excitations, and subsequently use them to implement a long-lived quantum memory. We additionally demonstrate preparation and measurement of maximally entangled 171Yb--51V Bell states. Unlike conventional, disordered nuclear spin based quantum memories, our platform is deterministic and reproducible, ensuring identical quantum registers for all 171Yb qubits. Our approach provides a framework for utilising the complex structure of dense nuclear spin baths, paving the way for building large-scale quantum networks using single rare-earth ion qubits.
We study the depolarization dynamics of a dense ensemble of dipolar interacting spins, associated with nitrogen-vacancy centers in diamond. We observe anomalously fast, density-dependent, and non-exponential spin relaxation. To explain these observations, we propose a microscopic model where an interplay of long-range interactions, disorder, and dissipation leads to predictions that are in quantitative agreement with both current and prior experimental results. Our results pave the way for controlled many-body experiments with long-lived and strongly interacting ensembles of solid-state spins.
Quantum control of solid-state spin qubits typically involves pulses in the microwave domain, drawing from the well-developed toolbox of magnetic resonance spectroscopy. Driving a solid-state spin by optical means offers a high-speed alternative, which in the presence of limited spin coherence makes it the preferred approach for high-fidelity quantum control. Bringing the full versatility of magnetic spin resonance to the optical domain requires full phase and amplitude control of the optical fields. Here, we imprint a programmable microwave sequence onto a laser field and perform electron spin resonance in a semiconductor quantum dot via a two-photon Raman process. We show that this approach yields full SU(2) spin control with over 98% pi-rotation fidelity. We then demonstrate its versatility by implementing a particular multi-axis control sequence, known as spin locking. Combined with electron-nuclear Hartmann-Hahn resonances which we also report in this work, this sequence will enable efficient coherent transfer of a quantum state from the electron spin to the mesoscopic nuclear ensemble.
Noise spectroscopy elucidates the fundamental noise sources in spin systems, which is essential to develop spin qubits with long coherence times for quantum information processing, communication, and sensing. But noise spectroscopy typically relies on microwave spin control to extract the noise spectrum, which becomes infeasible when high-frequency noise components are stronger than the available microwave power. Here, we demonstrate an alternative all-optical approach to perform noise spectroscopy. Our approach utilises coherent control using Raman rotations with controlled timings and phases to implement Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences. Analysing the spin dynamics under these sequences extracts the noise spectrum of a dense ensemble of nuclear spins interacting with a quantum dot, which has thus far only been modelled theoretically. While providing large spectral bandwidths of over 100 MHz, our Raman-based approach could serve as an important tool to study spin dynamics and decoherence mechanisms in a broad range of solid-state spin qubits.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا