No Arabic abstract
Topological invariants play a key role in the characterization of topological states. Due to the existence of exceptional points, it is a great challenge to detect topological invariants in non-Hermitian systems. We put forward a dynamic winding number, the winding of realistic observables in long-time average, for exploring band topology in both Hermitian and non-Hermitian two-band models via a unified approach. We build a concrete relation between dynamic winding numbers and conventional topological invariants. In one-dimension, the dynamical winding number directly gives the conventional winding number. In two-dimension, the Chern number relates to the weighted sum of dynamic winding numbers of all phase singularity points. This work opens a new avenue to measure topological invariants not requesting any prior knowledge of system topology via time-averaged spin textures.
We study the Haldane model with nearest-neighbor interactions. This model is physically motivated by the associated ultracold atoms implementation. We show that the topological phase of the interacting model can be characterized by a physically observable winding number. The robustness of this number extends well beyond the topological insulator phase towards attractive and repulsive interactions that are comparable to the kinetic energy scale of the model. We identify and characterize the relevant phases of the model.
Topological states of fermionic matter can be induced by means of a suitably engineered dissipative dynamics. Dissipation then does not occur as a perturbation, but rather as the main resource for many-body dynamics, providing a targeted cooling into a topological phase starting from an arbitrary initial state. We explore the concept of topological order in this setting, developing and applying a general theoretical framework based on the system density matrix which replaces the wave function appropriate for the discussion of Hamiltonian ground-state physics. We identify key analogies and differences to the more conventional Hamiltonian scenario. Differences mainly arise from the fact that the properties of the spectrum and of the state of the system are not as tightly related as in a Hamiltonian context. We provide a symmetry-based topological classification of bulk steady states and identify the classes that are achievable by means of quasi-local dissipative processes driving into superfluid paired states. We also explore the fate of the bulk-edge correspondence in the dissipative setting, and demonstrate the emergence of Majorana edge modes. We illustrate our findings in one- and two-dimensional models that are experimentally realistic in the context of cold atoms.
Quantum geometry has emerged as a central and ubiquitous concept in quantum sciences, with direct consequences on quantum metrology and many-body quantum physics. In this context, two fundamental geometric quantities play complementary roles: the Fubini-Study metric, which introduces a notion of distance between quantum states defined over a parameter space, and the Berry curvature associated with Berry-phase effects and topological band structures. In fact, recent studies have revealed direct relations between these two important quantities, suggesting that topological properties can, in special cases, be deduced from the quantum metric. In this work, we establish general and exact relations between the quantum metric and the topological invariants of generic Dirac Hamiltonians. In particular, we demonstrate that topological indices (Chern numbers or winding numbers) are bounded by the quantum volume determined by the quantum metric. Our theoretical framework, which builds on the Clifford algebra of Dirac matrices, is applicable to topological insulators and semimetals of arbitrary spatial dimensions, with or without chiral symmetry. This work clarifies the role of the Fubini-Study metric in topological states of matter, suggesting unexplored topological responses and metrological applications in a broad class of quantum-engineered systems.
Characterization of equilibrium topological quantum phases by non-equilibrium quench dynamics provides a novel and efficient scheme in detecting topological invariants defined in equilibrium. Nevertheless, most of the previous studies have focused on the ideal sudden quench regime. Here we provide a generic non-adiabatic protocol of slowly quenching the system Hamiltonian, and investigate the non-adiabatic dynamical characterization scheme of topological phase. The {it slow} quench protocol is realized by introducing a Coulomb-like Landau-Zener problem, and it can describe, in a unified way, the crossover from sudden quench regime (deep non-adiabatic limit) to adiabatic regime. By analytically obtaining the final state vector after non-adiabatic evolution, we can calculate the time-averaged spin polarization and the corresponding topological spin texture. We find that the topological invariants of the post-quench Hamiltonian are characterized directly by the values of spin texture on the band inversion surfaces. Compared to the sudden quench regime, where one has to take an additional step to calculate the {it gradients} of spin polarization, this non-adiabatic characterization provides a {it minimal} scheme in detecting the topological invariants. Our findings are not restricted to 1D and 2D topological phases under Coulomb-like quench protocol, but are also valid for higher dimensional system or different quench protocol.
We introduce protocols for designing and manipulating qubits with ultracold alkali atoms in 3D optical lattices. These qubits are formed from two-atom spin superposition states that create a decoherence-free subspace immune to stray magnetic fields, dramatically improving coherence times while still enjoying the single-site addressability and Feshbach resonance control of state-of-the-art alkali atom systems. Our protocol requires no continuous driving or spin-dependent potentials, and instead relies upon the population of a higher motional band to realize naturally tunable in-site exchange and cross-site superexchange interactions. As a proof-of-principle example of their utility for entanglement generation for quantum computation, we show the cross-site superexchange interactions can be used to engineer 1D cluster states. Explicit protocols for experimental preparation and manipulation of the qubits are also discussed, as well as methods for measuring more complex quantities such as out-of-time-ordered correlation functions (OTOCs).