Projected Proca Field Theory: a One-Loop Study


Abstract in English

The recent discovery of two-dimensional Dirac materials, such as graphene and transition-metaldichalcogenides, has raised questions about the treatment of hybrid systems, in which electrons moving in a two-dimensional plane interact via virtual photons from the three-dimensional space. In this case, a projected non-local theory, known as Pseudo-QED, or reduced QED, has shown to provide a correct framework for describing the interactions displayed by these systems. In a related situation, in planar materials exhibiting a superconducting phase, the electromagnetic field has a typical exponential decay that is interpreted as the photons having an effective mass, as a consequence of the Anderson-Higgs mechanism. Here, we use an analogous projection to that used to obtain the pseudo-QED to derive a Pseudo-Proca equivalent model. In terms of this model, we unveil the main effects of attributing a mass to the photons and to the quasi-relativistic electrons. The one-loop radiative corrections to the electron mass, to the photon and to the electron-photon vertex are computed. We calculate the quantum corrections to the electron g-factor and show that it smoothly goes to zero in the limit when the photon mass is much larger than the electron mass. In addition, we correct the results obtained for graphene within Pseudo-QED in the limit when the photon mass vanishes.

Download