Higgs Assisted Razor Search for Higgsinos at a 100 TeV pp Collider


Abstract in English

A 100 TeV proton-proton collider will be an extremely effective way to probe the electroweak sector of the Minimal Supersymmetric Standard Model (MSSM). In this paper, we describe a search strategy for discovering pair-produced Higgsino-like next-to-lightest supersymmetric particles (NLSPs) at a 100 TeV hadron collider that decay to Bino-like lightest supersymmetric particle (LSP) via intermediate Z and SM Higgs boson that in turn decay to a pair of leptons and a pair of b-quarks respectively: $widetilde{N}_2^0widetilde{N}_3^0 rightarrow (Zwidetilde{N}_1^0)(hwidetilde{N}_1^0)rightarrow bbellell+widetilde{N}_1^0widetilde{N}_1^0$. In addition, we examine the potential for machine learning techniques to boost the power of our searches. Using this analysis, Higgsinos up to 1.4 TeV can be discovered at $5sigma$ level for a Bino with mass of about 0.9 TeV using 3000 fb$^{-1}$ of data. Additionally, Higgsinos up to 1.8 TeV can be excluded at 95% C.L. for Binos with mass of about 1.4 TeV. This search channel extends the multi-lepton search limits, especially in the region where the mass difference between the Higgsino NLSPs and the Bino LSP is small.

Download