Do you want to publish a course? Click here

Localization in Ultra Narrow Band IoT Networks: Design Guidelines and Trade-Offs

123   0   0.0 ( 0 )
 Added by Hazem Sallouha
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Localization in long-range Internet of Things networks is a challenging task, mainly due to the long distances and low bandwidth used. Moreover, the cost, power, and size limitations restrict the integration of a GPS receiver in each device. In this work, we introduce a novel received signal strength indicator (RSSI) based localization solution for ultra narrow band (UNB) long-range IoT networks such as Sigfox. The essence of our approach is to leverage the existence of a few GPS-enabled sensors (GSNs) in the network to split the wide coverage into classes, enabling RSSI based fingerprinting of other sensors (SNs). By using machine learning algorithms at the network backed-end, the proposed approach does not impose extra power, payload, or hardware requirements. To comprehensively validate the performance of the proposed method, a measurement-based dataset that has been collected in the city of Antwerp is used. We show that a location classification accuracy of 80% is achieved by virtually splitting a city with a radius of 2.5 km into seven classes. Moreover, separating classes, by increasing the spacing between them, brings the classification accuracy up-to 92% based on our measurements. Furthermore, when the density of GSN nodes is high enough to enable device-to-device communication, using multilateration, we improve the probability of localizing SNs with an error lower than 20 m by 40% in our measurement scenario.



rate research

Read More

Internet of things wireless networking with long range, low power and low throughput is raising as a new paradigm enabling to connect trillions of devices efficiently. In such networks with low power and bandwidth devices, localization becomes more challenging. In this work we take a closer look at the underlying aspects of received signal strength indicator (RSSI) based localization in UNB long-range IoT networks such as Sigfox. Firstly, the RSSI has been used for fingerprinting localization where RSSI measurements of GPS anchor nodes have been used as landmarks to classify other nodes into one of the GPS nodes classes. Through measurements we show that a location classification accuracy of 100% is achieved when the classes of nodes are isolated. When classes are approaching each other, our measurements show that we can still achieve an accuracy of 85%. Furthermore, when the density of the GPS nodes is increasing, we can rely on peer-to-peer triangulation and thus improve the possibility of localizing nodes with an error less than 20m from 20% to more than 60% of the nodes in our measurement scenario. 90% of the nodes is localized with an error of less than 50m in our experiment with non-optimized anchor node locations.
The use of amateur drones (ADrs) is expected to significantly increase over the upcoming years. However, regulations do not allow such drones to fly over all areas, in addition to typical altitude limitations. As a result, there is an urgent need for ADrs surveillance solutions. These solutions should include means of accurate detection, classification, and localization of the unwanted drones in a no-fly zone. In this paper, we give an overview of promising techniques for modulation classification and signal strength based localization of ADrs by using surveillance drones (SDrs). By introducing a generic altitude dependent propagation model, we show how detection and localization performance depend on the altitude of SDrs. Particularly, our simulation results show a 25 dB reduction in the minimum detectable power or 10 times coverage enhancement of an SDr by flying at the optimum altitude. Moreover, for a target no-fly zone, the location estimation error of an ADr can be remarkably reduced by optimizing the positions of the SDrs. Finally, we conclude the paper with a general discussion about the future work and possible challenges of the aerial surveillance systems.
Fifth Generation (5G) wireless networks are designed to meet various end-user Quality of Service (QoS) requirements through high data rates (typically of Gbps order) and low latencies. Coupled with Fog and Mobile Edge Computing (MEC), 5G can achieve high data rates, enabling complex autonomous smart city services such as the large deployment of self-driving vehicles and large-scale Artificial Intelligence (AI)-enabled industrial manufacturing. However, to meet the exponentially growing number of connected IoT devices and irregular data and service requests in both low and highly dense locations, the process of enacting traditional cells supported through fixed and costly base stations requires rethought to enable on-demand mobile access points in the form of Unmanned Aerial Vehicles (UAV) for diversified smart city scenarios. This article envisions a 5G network environment that is supported by blockchain-enabled UAVs to meet dynamic user demands with network access supply. The solution enables decentralized service delivery (Drones as a Service) and routing to and from end-users in a reliable and secure manner. Both public and private blockchains are deployed within the UAVs, supported by fog and cloud computing devices and data centers to provide wide range of complex authenticated service and data availability. Particular attention is paid tocomparing data delivery success rates and message exchange in the proposed solution against traditional UAV-supported cellular networks. Challenges and future research are also discussed with highlights on emerging technologies such as Federated Learning.
Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for todays cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.
Increased access to mobile devices motivates the need to design communicative visualizations that are responsive to varying screen sizes. However, relatively little design guidance or tooling is currently available to authors. We contribute a detailed characterization of responsive visualization strategies in communication-oriented visualizations, identifying 76 total strategies by analyzing 378 pairs of large screen (LS) and small screen (SS) visualizations from online articles and reports. Our analysis distinguishes between the Targets of responsive visualization, referring to what elements of a design are changed and Actions representing how targets are changed. We identify key trade-offs related to authors need to maintain graphical density, referring to the amount of information per pixel, while also maintaining the message or intended takeaways for users of a visualization. We discuss implications of our findings for future visualization tool design to support responsive transformation of visualization designs, including requirements for automated recommenders for communication-oriented responsive visualizations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا