No Arabic abstract
In weakly collisional space plasmas, the turbulent cascade provides most of the energy that is dissipated at small scales by various kinetic processes. Understanding the characteristics of such dissipative mechanisms requires the accurate knowledge of the fluctuations that make energy available for conversion at small scales, as different dissipation processes are triggered by fluctuations of a different nature. The scaling properties of different energy channels are estimated here using a proxy of the local energy transfer, based on the third-order moment scaling law for magnetohydrodynamic turbulence. In particular, the sign-singularity analysis was used to explore the scaling properties of the alternating positive-negative energy fluxes, thus providing information on the structure and topology of such fluxes for each of the different type of fluctuations. The results show the highly complex geometrical nature of the flux, and that the local contributions associated with energy and cross-helicity nonlinear transfer have similar scaling properties. Consequently, the fractal properties of current and vorticity structures are similar to those of the Alfvenic fluctuations.
In the context of space and astrophysical plasma turbulence and particle heating, several vocabularies emerge for estimating turbulent energy dissipation rate, including Kolmogorov-Yaglom third-order law and, in its various forms, $boldsymbol{j}cdotboldsymbol{E}$ (work done by the electromagnetic field on particles), and $-left( boldsymbol{P} cdot abla right) cdot boldsymbol{u}$ (pressure-strain interaction), to name a couple. It is now understood that these energy transfer channels, to some extent, are correlated with coherent structures. In particular, we find that different energy dissipation proxies, although not point-wise correlated, are concentrated in proximity to each other, for which they decorrelate in a few $d_i$(s). However, the energy dissipation proxies dominate at different scales. For example, there is an inertial range over which the third-order law is meaningful. Contributions from scale bands stemming from scale-dependent spatial filtering show that, the energy exchange through $boldsymbol{j}cdotboldsymbol{E}$ mainly results from large scales, while the energy conversion from fluid flow to internal through $-left( boldsymbol{P} cdot abla right) cdot boldsymbol{u}$ dominates at small scales.
How turbulent energy is dissipated in weakly collisional space and astrophysical plasmas is a major open question. Here, we present the application of a field-particle correlation technique to directly measure the transfer of energy between the turbulent electromagnetic field and electrons in the Earths magnetosheath, the region of solar wind downstream of the Earths bow shock. The measurement of the secular energy transfer from the parallel electric field as a function of electron velocity shows a signature consistent with Landau damping. This signature is coherent over time, close to the predicted resonant velocity, similar to that seen in kinetic Alfven turbulence simulations, and disappears under phase randomisation. This suggests that electron Landau damping could play a significant role in turbulent plasma heating, and that the technique is a valuable tool for determining the particle energisation processes operating in space and astrophysical plasmas.
Kinetic Alfv{e}n waves (KAWs) are the short-wavelength extension of the MHD Alfv{e}n-wave branch in the case of highly-oblique propagation with respect to the background magnetic field. Observations of space plasma show that small-scale turbulence is mainly KAW-like. We apply two theoretical approaches, collisional two-fluid theory and collisionless kinetic theory, to obtain predictions for the KAW polarizations depending on $beta_mathrm{p}$ (the ratio of the proton thermal pressure to the magnetic pressure) at the ion gyroscale in terms of fluctuations in density, bulk velocity, and pressure. We perform a wavelet analysis of MMS magnetosheath measurements and compare the observations with both theories. We find that the two-fluid theory predicts the observations better than kinetic theory, suggesting that the small-scale KAW-like fluctuations exhibit a fluid-like behavior in the magnetosheath although the plasma is weakly collisional. We also present predictions for the KAW polarizations in the inner heliosphere that are testable with Parker Solar Probe and Solar Orbiter.
The nature of the turbulent energy transfer rate is studied using direct numerical simulations of weakly collisional space plasmas. This is done comparing results obtained from hybrid Vlasov-Maxwell simulations of colissionless plasmas, Hall-magnetohydrodynamics, and Landau fluid models reproducing low-frequency kinetic effects, such as the Landau damping. In this partially developed turbulent scenario, estimates of the local and global scaling properties of different energy channels are obtained using a proxy of the local energy transfer (LET). This approach provides information on the structure of energy fluxes, under the assumption that the turbulent cascade transfers most of the energy that is then dissipated at small scales by various kinetic processes in this kind of plasmas.
Direct evidence of an inertial-range turbulent energy cascade has been provided by spacecraft observations in heliospheric plasmas. In the solar wind, the average value of the derived heating rate near 1 au is $sim 10^{3}, mathrm{J,kg^{-1},s^{-1}}$, an amount sufficient to account for observed departures from adiabatic expansion. Parker Solar Probe (PSP), even during its first solar encounter, offers the first opportunity to compute, in a similar fashion, a fluid-scale energy decay rate, much closer to the solar corona than any prior in-situ observations. Using the Politano-Pouquet third-order law and the von Karman decay law, we estimate the fluid-range energy transfer rate in the inner heliosphere, at heliocentric distance $R$ ranging from $54,R_{odot}$ (0.25 au) to $36,R_{odot}$ (0.17 au). The energy transfer rate obtained near the first perihelion is about 100 times higher than the average value at 1 au. This dramatic increase in the heating rate is unprecedented in previous solar wind observations, including those from Helios, and the values are close to those obtained in the shocked plasma inside the terrestrial magnetosheath.