No Arabic abstract
This white paper proposes that AMBITION, a Comet Nucleus Sample Return mission, be a cornerstone of ESAs Voyage 2050 programme. We summarise some of the most important questions still open in cometary science after the successes of the Rosetta mission, many of which require sample analysis using techniques that are only possible in laboratories on Earth. We then summarise measurements, instrumentation and mission scenarios that can address these questions, with a recommendation that ESA select an ambitious cryogenic sample return mission. Rendezvous missions to Main Belt comets and Centaurs are compelling cases for M-class missions, expanding our knowledge by exploring new classes of comets. AMBITION would engage a wide community, drawing expertise from a vast range of disciplines within planetary science and astrophysics. With AMBITION, Europe will continue its leadership in the exploration of the most primitive Solar System bodies.
Comets hold answers to mysteries of the Solar System by recording presolar history, the initial states of planet formation and prebiotic organics and volatiles to the early Earth. Analysis of returned samples from a comet nucleus will provide unparalleled knowledge about the Solar System starting materials and how they came together to form planets and give rise to life: 1. How did comets form? 2. Is comet material primordial, or has it undergone a complex alteration history? 3. Does aqueous alteration occur in comets? 4. What is the composition of cometary organics? 5. Did comets supply a substantial fraction of Earths volatiles? 6. Did cometary organics contribute to the homochirality in life on Earth? 7. How do complex organic molecules form and evolve in interstellar, nebular, and planetary environments? 8. What can comets tell us about the mixing of materials in the protosolar nebula?
This paper presents the ESA Voyage 2050 White Paper for a concept of TeraHertz Exploration and Zooming-in for Astrophysics (THEZA). It addresses the science case and some implementation issues of a space-borne radio interferometric system for ultra-sharp imaging of celestial radio sources at the level of angular resolution down to (sub-) microarcseconds. THEZA focuses at millimetre and sub-millimetre wavelengths (frequencies above $sim$300~GHz), but allows for science operations at longer wavelengths too. The THEZA concept science rationale is focused on the physics of spacetime in the vicinity of supermassive black holes as the leading science driver. The main aim of the concept is to facilitate a major leap by providing researchers with orders of magnitude improvements in the resolution and dynamic range in direct imaging studies of the most exotic objects in the Universe, black holes. The concept will open up a sizeable range of hitherto unreachable parameters of observational astrophysics. It unifies two major lines of development of space-borne radio astronomy of the past decades: Space VLBI (Very Long Baseline Interferometry) and mm- and sub-mm astrophysical studies with single dish instruments. It also builds upon the recent success of the Earth-based Event Horizon Telescope (EHT) -- the first-ever direct image of a shadow of the super-massive black hole in the centre of the galaxy M87. As an amalgam of these three major areas of modern observational astrophysics, THEZA aims at facilitating a breakthrough in high-resolution high image quality studies in the millimetre and sub-millimetre domain of the electromagnetic spectrum.
A new all-sky visible and Near-InfraRed (NIR) space astrometry mission with a wavelength cutoff in the K-band is not just focused on a single or small number of key science cases. Instead, it is extremely broad, answering key science questions in nearly every branch of astronomy while also providing a dense and accurate visible-NIR reference frame needed for future astronomy facilities. For almost 2 billion common stars the combination of Gaia and a new all-sky NIR astrometry mission would provide much improved proper motions, answering key science questions -- from the solar system and stellar systems, including exoplanet systems, to compact galaxies, quasars, neutron stars, binaries and dark matter substructures. The addition of NIR will result in up to 8 billion newly measured stars in some of the most obscured parts of our Galaxy, and crucially reveal the very heart of the Galactic bulge region. In this white paper we argue that rather than improving on the accuracy, a greater overall science return can be achieved by going deeper than Gaia and by expanding the wavelength range to the NIR.
This White Paper outlines the importance of addressing the fundamental science theme <<How are charged particles energized in space plasmas>> through a future ESA mission. The White Paper presents five compelling science questions related to particle energization by shocks, reconnection,waves and turbulence, jets and their combinations. Answering these questions requires resolving scale coupling, nonlinearity and nonstationarity, which cannot be done with existing multi-point observations. In situ measurements from a multi-point, multi-scale L-class plasma observatory consisting of at least 7 spacecraft covering fluid, ion and electron scales are needed. The plasma observatory will enable a paradigm shift in our comprehension of particle energization and space plasma physics in general, with very important impact on solar and astrophysical plasmas. It will be the next logical step following Cluster, THEMIS and MMS for the very large and active European space plasmas community. Being one of the cornerstone missions of the future ESA Voyage 2035-2050 science program, it would further strengthen the European scientific and technical leadership in this important field.
In the last decade, the Kepler and CoRoT space-photometry missions have demonstrated the potential of asteroseismology as a novel, versatile and powerful tool to perform exquisite tests of stellar physics, and to enable precise and accurate characterisations of stellar properties, with impact on both exoplanetary and Galactic astrophysics. Based on our improved understanding of the strengths and limitations of such a tool, we argue for a new small/medium space mission dedicated to gathering high-precision, high-cadence, long photometric series in dense stellar fields. Such a mission will lead to breakthroughs in stellar astrophysics, especially in the metal poor regime, will elucidate the evolution and formation of open and globular clusters, and aid our understanding of the assembly history and chemodynamics of the Milky Ways bulge and few nearby dwarf galaxies.