Do you want to publish a course? Click here

On the Geometry of Extended Self-Similar Solutions of the Airy Shallow Water Equations

167   0   0.0 ( 0 )
 Added by Giovanni Ortenzi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Self-similar solutions of the so called Airy equations, equivalent to the dispersionless nonlinear Schrodinger equation written in Madelung coordinates, are found and studied from the point of view of complete integrability and of their role in the recurrence relation from a bi-Hamiltonian structure for the equations. This class of solutions reduces the PDEs to a finite ODE system which admits several conserved quantities, which allow to construct explicit solutions by quadratures and provide the bi-Hamiltonian formulation for the reduced ODEs.

rate research

Read More

195 - R. S. Ward 2015
We study smooth SU(2) solutions of the Hitchin equations on R^2, with the determinant of the complex Higgs field being a polynomial of degree n. When n>=3, there are moduli spaces of solutions, in the sense that the natural L^2 metric is well-defined on a subset of the parameter space. We examine rotationally-symmetric solutions for n=1 and n=2, and then focus on the n=3 case, elucidating the moduli and describing the asymptotic geometry as well as the geometry of two totally-geodesic surfaces.
129 - M.V. Pavlov , R.F. Vitolo 2014
We consider the WDVV associativity equations in the four dimensional case. These nonlinear equations of third order can be written as a pair of six component commuting two-dimensional non-diagonalizable hydrodynamic type systems. We prove that these systems possess a compatible pair of local homogeneous Hamiltonian structures of Dubrovin--Novikov type (of first and third order, respectively).
66 - O. Gamayun , O. Lisovyy 2019
We study self-similar solutions of the binormal curvature flow which governs the evolution of vortex filaments and is equivalent to the Landau-Lifshitz equation. The corresponding dynamics is described by the real solutions of $sigma$-Painlev{e} IV equation with two real parameters. Connection formulae for Painlev{e} IV transcendents allow for a complete characterization of the asymptotic properties of the curvature and torsion of the filament. We also provide compact hypergeometric expressions for self-similar solutions corresponding to corner initial conditions.
Regarding $N$-soliton solutions, the trigonometric type, the hyperbolic type, and the exponential type solutions are well studied. While for the elliptic type solution, we know only the one-soliton solution so far. Using the commutative B{a}cklund transformation, we have succeeded in constructing the KdV static elliptic $N$-soliton solution, which means that we have constructed infinitely many solutions for the $wp$-function type differential equation.
We prove the integrability and superintegrability of a family of natural Hamiltonians which includes and generalises those studied in some literature, originally defined on the 2D Minkowski space. Some of the new Hamiltonians are a perfect analogy of the well-known superintegrable system on the Euclidean plane proposed by Tremblay-Turbiner-Winternitz and they are defined on Minkowski space, as well as on all other 2D manifolds of constant curvature, Riemannian or pseudo-Riemannian. We show also how the application of the coupling-constant-metamorphosis technique allows us to obtain new superintegrable Hamiltonians from the previous ones. Moreover, for the Minkowski case, we show the quantum superintegrability of the corresponding quantum Hamiltonian operator.Our results are obtained by applying the theory of extended Hamiltonian systems, which is strictly connected with the geometry of warped manifolds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا