Layer-selective detection of magnetization directions from two layers of antiferromagnetically-coupled magnetizations by ferromagnetic resonance using a spin-torque oscillator


Abstract in English

We use micromagnetic simulation to demonstrate layer-selective detection of magnetization directions from magnetic dots having two recording layers by using a spin-torque oscillator (STO) as a read device. This method is based on ferromagnetic resonance (FMR) excitation of recording-layer magnetizations by the microwave field from the STO. The FMR excitation affects the oscillation of the STO, which is utilized to sense the magnetization states in a recording layer. The recording layers are designed to have different FMR frequencies so that the FMR excitation is selectively induced by tuning the oscillation frequency of the STO. Since all magnetic layers interact with each other through dipolar fields, unnecessary interlayer interferences can occur, which are suppressed by designing magnetic properties of the layers. We move the STO over the magnetic dots, which models a read head moving over recording media, and show that changes in the STO oscillation occur on the one-nanosecond timescale.

Download