Antiferromagnetic (AFM) spintronics exploits the Neel vector as a state variable for novel spintronic devices. Recent studies have shown that the field-like and antidamping spin-orbit torques (SOT) can be used to switch the Neel vector in antiferromagnets with proper symmetries. However, the precise detection of the Neel vector remains a challenging problem. In this letter, we predict that the nonlinear anomalous Hall effect (AHE) can be used to detect the Neel vector in most compensated antiferromagnets supporting the antidamping SOT. We show that the magnetic crystal group symmetry of these antiferromagnets combined with spin-orbit coupling produce a sizable Berry curvature dipole and hence the nonlinear AHE. As a specific example, we consider half-Heusler alloy CuMnSb, which Neel vector can be switched by the antidamping SOT. Based on density functional theory calculations, we show that the nonlinear AHE in CuMnSb results in a measurable Hall voltage under conventional experimental conditions. The strong dependence of the Berry curvature dipole on the Neel vector orientation provides a new detection scheme of the Neel vector based on the nonlinear AHE. Our predictions enrich the material platform for studying non-trivial phenomena associated with the Berry curvature and broaden the range of materials useful for AFM spintronics.