Probing CO and N$_2$ Snow Surfaces in Protoplanetary Disks with N$_2$H$^+$ Emission


Abstract in English

Snowlines of major volatiles regulate the gas and solid C/N/O ratios in the planet-forming midplanes of protoplanetary disks. Snow surfaces are the 2D extensions of snowlines in the outer disk regions, where radiative heating results in a decreasing temperature with disk height. CO and N$_2$ are two of the most abundant carriers of C, N and O. N$_2$H$^+$ can be used to probe the snow surfaces of both molecules, because it is destroyed by CO and formed from N$_2$. Here we present Atacama Large Millimeter/submillimeter Array (ALMA) observations of N$_2$H$^+$ at 0.2$$-0.4$$ resolution in the disks around LkCa 15, GM Aur, DM Tau, V4046 Sgr, AS 209, and IM Lup. We find two distinctive emission morphologies: N$_2$H$^+$ is either present in a bright, narrow ring surrounded by extended tenuous emission, or in a broad ring. These emission patterns can be explained by two different kinds of vertical temperature structures. Bright, narrow N$_2$H$^+$ rings are expected in disks with a thick Vertically Isothermal Region above the Midplane (VIRaM) layer (LkCa 15, GM Aur, DM Tau) where the N$_2$H$^+$ emission peaks between the CO and N$_2$ snowlines. Broad N$_2$H$^+$ rings come from disks with a thin VIRaM layer (V4046 Sgr, AS 209, IM Lup). We use a simple model to extract the first sets of CO and N$_2$ snowline pairs and corresponding freeze-out temperatures towards the disks with a thick VIRaM layer. The results reveal a range of N$_2$ and CO snowline radii towards stars of similar spectral type, demonstrating the need for empirically determined snowlines in disks.

Download