Do you want to publish a course? Click here

Inferring the 3-D shapes of extremely metal-poor galaxies from sets of projected shapes

135   0   0.0 ( 0 )
 Added by J. Sanchez Almeida
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The three-dimensional (3-D) shape of a galaxy inevitably is tied to how it has formed and evolved and to its dark matter halo. Local extremely metal-poor galaxies (XMPs; defined as having an average gas-phase metallicity < 0.1 solar) are important objects for understanding galaxy evolution largely because they appear to be caught in the act of accreting gas from the cosmic web, and their 3-D shape may reflect this. Here we report on the 3-D shape of XMPs as inferred from their observed projected minor-to-major axial ratios using a hierarchical Bayesian inference model, which determines the likely shape and orientation of each galaxy while simultaneously inferring the average shape and dispersion. We selected a sample of 149 XMPs and divided it into three sub-samples according to physical size and found that (1) the stellar component of XMPs of all sizes tends to be triaxial, with an intermediate axis approx 0.7 times the longest axis and that (2) smaller XMPs tend to be relatively thicker, with the shortest axis going from approx 0.15 times the longest axis for the large galaxies to approx 0.4 for the small galaxies. We provide the inferred 3-D shape and inclination of the individual XMPs in electronic format. We show that our results for the intermediate axis are not clouded by a selection effect against face-on XMPs. We discuss how an intermediate axis significantly smaller than the longest axis may be produced by several mechanisms, including lopsided gas accretion, non-axisymmetric star formation, or coupling with an elongated dark matter halo. Large relative thickness may reflect slow rotation, stellar feedback, or recent gas accretion.



rate research

Read More

We investigate the morphology of the stellar distribution in a sample of Milky Way (MW) like galaxies in the TNG50 simulation. Using a local in shell iterative method (LSIM) as the main approach, we explicitly show evidence of twisting (in about 52% of halos) and stretching (in 48% of them) in the real space. This is matched with the re-orientation observed in the eigenvectors of the inertia tensor and gives us a clear picture of having a re-oriented stellar distribution. We make a comparison between the shape profile of dark matter (DM) halo and stellar distribution and quite remarkably see that their radial profiles are fairly close, especially at small galactocentric radii where the stellar disk is located. This implies that the DM halo is somewhat aligned with stars in response to the baryonic potential. The level of alignment mostly decreases away from the center. We study the impact of substructures in the orbital circularity parameter. It is demonstrated that in some cases, far away substructures are counter-rotating compared with the central stars and may flip the sign of total angular momentum and thus the orbital circularity parameter. Truncating them above 150 kpc, however, retains the disky structure of the galaxy as per initial selection. Including the impact of substructures in the shape of stars, we explicitly show that their contribution is subdominant. Overlaying our theoretical results to the observational constraints from previous literature, we establish fair agreement.
The distribution of three dimensional intrinsic galaxy shapes has been a longstanding open question. The difficulty stems from projection effects meaning one must rely on statistical methods applied to galaxy samples to infer intrinsic shape distributions. Theoretical work using analytical galaxy potentials suggests a relationship between galaxy intrinsic shape (as defined by its triaxiality, in practice a proxy for how prolate a galaxy is) and the intrinsic misalignment angle between kinematic and morphological axes ($Psi_{rm int}$). This relationship reduces the number of unknowns, providing more reliable inferred intrinsic shape distributions than methods using photometry alone. Here we explore the connection between intrinsic shape and stellar kinematics using cosmological hydrodynamical simulations from the Illustris project. The strongest relationship we find is that galaxy intrinsic flattening is correlated with specific angular momentum (j) with high j galaxies being flatter than galaxies with low specific angular momentum. Our analysis shows that, although the majority of kinematically misaligned galaxies exhibit prolate shapes, examples of kinematically aligned prolate galaxies are also present. Clearly a direct correspondence between prolate shape and minor-axis rotation (often referred to as prolate rotation) is not present in Illustris. Thus, we demonstrate that the assumption of a simple relationship between $Psi_{rm int}$ and intrinsic shape commonly employed in shape recovery studies is not valid for Illustris galaxies. We suggest improvements on the method as well as some alternative methods for future work in this area.
74 - Jaime Salcido 2019
We introduce a simple analytic model of galaxy formation that links the growth of dark matter haloes in a cosmological background to the build-up of stellar mass within them. The model aims to identify the physical processes that drive the galaxy-halo co-evolution through cosmic time. The model restricts the role of baryonic astrophysics to setting the relation between galaxies and their haloes. Using this approach, galaxy properties can be directly predicted from the growth of their host dark matter haloes. We explore models in which the effective star formation efficiency within haloes is a function of mass (or virial temperature) and independent of time. Despite its simplicity, the model reproduces self-consistently the shape and evolution of the cosmic star formation rate density, the specific star formation rate of galaxies, and the galaxy stellar mass function, both at the present time and at high redshifts. By systematically varying the effective star formation efficiency in the model, we explore the emergence of the characteristic shape of the galaxy stellar mass function. The origin of the observed double Schechter function at low redshifts is naturally explained by two efficiency regimes in the stellar to halo mass relation, namely, a stellar feedback regulated stage, and a supermassive black hole regulated stage. By providing a set of analytic differential equations, the model can be easily extended and inverted, allowing the roles and impact of astrophysics and cosmology to be explored and understood.
We present measurements of $f_h$, the ratio of the aligned components of the projected halo and galaxy ellipticities, for a sample of central galaxies using weak gravitational lensing data from the Kilo-Degree Survey (KiDS). Using a lens galaxy shape estimation that is more sensitive to outer galaxy regions, we find $f_{rm h}=0.50pm0.20$ for our full sample and $f_{rm h}=0.55pm0.19$ for an intrinsically red (and therefore higher stellar-mass) sub-sample, rejecting the hypothesis of round halos and/or galaxies being un-aligned with their parent halo at $2.5sigma$ and $2.9sigma$, respectively. We quantify the 93.4% purity of our central galaxy sample using numerical simulations and overlapping spectroscopy from the Galaxy and Mass Assembly survey. This purity ensures that the interpretation of our measurements is not complicated by the presence of a significant fraction of satellite galaxies. Restricting our central galaxy ellipticity measurement to the inner isophotes, we find $f_{rm h}=0.34pm0.17$ for our red sub-sample, suggesting that the outer galaxy regions are more aligned with their dark matter halos compared to the inner regions. Our results are in agreement with previous studies and suggest that lower mass halos are rounder and/or less aligned with their host galaxy than samples of more massive galaxies, studied in galaxy groups and clusters.
We present the analytical framework for converting projected light distributions with a Sersic profile into three-dimensional light distributions for stellar systems of arbitrary triaxial shape. The main practical result is the definition of a simple yet robust measure of intrinsic galaxy size: the median radius $r_mathrm{med}$, defined as the radius of a sphere that contains 50% of the total luminosity or mass, that is, the median distance of a star to the galaxy center. We examine how $r_mathrm{med}$ depends on projected size measurements as a function of Sersic index and intrinsic axis ratios, and demonstrate its relative independence of these parameters. As an application we show that the projected semi-major axis length of the ellipse enclosing 50% of the light is an unbiased proxy for $r_mathrm{med}$, with small galaxy-to-galaxy scatter of $sim$10% (1$sigma$), under the condition that the variation in triaxiality within the population is small. For galaxy populations with unknown or a large range in triaxiality an unbiased proxy for $r_mathrm{med}$ is $1.3times R_{e}$, where $R_{e}$ is the circularized half-light radius, with galaxy-to-galaxy scatter of 20-30% (1$sigma$). We also describe how inclinations can be estimated for individual galaxies based on the measured projected shape and prior knowledge of the intrinsic shape distribution of the corresponding galaxy population. We make the numerical implementation of our calculations available.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا