Peta-Pascal Pressure Driven by Fast Isochoric Heating with Multi-Picosecond Intense Laser Pulse


Abstract in English

Fast isochoric laser heating is a scheme to heat a matter with relativistic-intensity ($>$ 10$^{18}$ W/cm$^2$) laser pulse or X-ray free electron laser pulse. The fast isochoric laser heating has been studied for creating efficiently ultra-high-energy-density (UHED) state. We demonstrate an fast isochoric heating of an imploded dense plasma using a multi-picosecond kJ-class petawatt laser with an assistance of externally applied kilo-tesla magnetic fields for guiding fast electrons to the dense plasma.The UHED state with 2.2 Peta-Pascal is achieved experimentally with 4.6 kJ of total laser energy that is one order of magnitude lower than the energy used in the conventional implosion scheme. A two-dimensional particle-in-cell simulation reveals that diffusive heating from a laser-plasma interaction zone to the dense plasma plays an essential role to the efficient creation of the UHED state.

Download