We investigate the effect of Ni${text -}$substitution on the crystalline structure and the critical behavior of $Nd_{0.6}Sr_{0.4}Mn_{1-x}Ni_{x}O_{3}$ (0.00 $leq$ x $leq$ 0.20) perovskite. X${text -}$ray diffraction patterns revealed that the major phase in all samples is the orthorhombic structure with space group $textit{Pnma}$. Rietveld refinement revealed a linear reduction in the lattice parameters along with monotonic reduction in the O2${text -}$Mn${text -}$O2 angel with increasing Ni concentration. The modified Arrott plots and the Kouvel${text -}$Fisher method have been used to analyze the magnetization isotherms near the paramagnetic to ferromagnetic (PM${text -}$FM) phase transition. The obtained critical exponents ($beta$, $gamma$ and $delta$) revealed that the Ni${text -}$free sample is consistent with 3D${text -}$Heisenberg like behavior. However, upon Ni${text -}$substitution, the critical exponents exhibit a mean field like behavior. The reliability of the obtained critical exponent ($beta$, $gamma$ and $delta$) values have been confirmed by the universal scaling behavior of the isothermal magnetization near the transition temperature.