Do you want to publish a course? Click here

Intrinsic Morphology of Ultra-diffuse Galaxies

103   0   0.0 ( 0 )
 Added by Yu Rong
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the published data of apparent axis ratios for 1109 ultra-diffuse galaxies (UDGs) located in 17 low-redshift (z~ 0.020 - 0.063) galaxy clusters and 84 UDGs in 2 intermediate-redshift (z~ 0.308 - 0.348) clusters, we take advantage of a Markov Chain Monte Carlo approach and assume a ubiquitous triaxial model to investigate the intrinsic morphologies of UDGs. In contrast to the conclusion of Burkert (2017), i.e., the underlying shapes of UDGs are purely prolate ($C=B<A$), we find that the data favor the oblate-triaxial models ($C<Blesssim A$) over the nearly prolate ones. We also find that the intrinsic morphologies of UDGs are relevant to their stellar masses/luminosities, environments, and redshifts. First, for the low-redshift UDGs in the same environment, the more-luminous ones are always thicker than the less-luminous counterparts, possibly due to the more voilent internal supernovae feedback or external tidal interactions for the progenitors of the more-luminous UDGs. The UDG thickness dependence on luminosity is distinct from that of the typical quiescent dwarf ellipticals (dEs) and dwarf spheroidals (dSphs) in the local clusters and groups, but resembles that of massive galaxies; in this sense, UDGs may not be simply treated as an extension of the dE/dSph class with similar evolutionary histories. Second, for the low-redshift UDGs within the same luminosity range, the ones with smaller cluster-centric distances are more puffed-up, probably attributed to tidal interactions. Finally, the intermediate-redshift cluster UDGs are more flattened, which plausibly suggests a `disky origin for high-redshift, initial UDGs.



rate research

Read More

We investigate the formation of ultra-diffuse galaxies (UDGs) using the Auriga high-resolution cosmological magneto-hydrodynamical simulations of Milky Way-sized galaxies. We identify a sample of $92$ UDGs in the simulations that match a wide range of observables such as sizes, central surface brightness, S{e}rsic indices, colors, spatial distribution and abundance. Auriga UDGs have dynamical masses similar to normal dwarfs. In the field, the key to their origin is a strong correlation present in low-mass dark matter haloes between galaxy size and halo spin parameter. Field UDGs form in dark matter haloes with larger spins compared to normal dwarfs in the field, in agreement with previous semi-analytical models. Satellite UDGs, on the other hand, have two different origins: $sim 55%$ of them formed as field UDGs before they were accreted; the remaining $sim 45%$ were normal field dwarfs that subsequently turned into UDGs as a result of tidal interactions.
Dark matter as a Bose-Einstein condensate, such as the axionic scalar field particles of String Theory, can explain the coldness of dark matter on large scales. Pioneering simulations in this context predict a rich wave-like structure, with a ground state soliton core in every galaxy surrounded by a halo of excited states that interfere on the de Broglie scale. This de Broglie scale is largest for low mass galaxies as momentum is lower, providing a simple explanation for the wide cores of dwarf spheroidal galaxies. Here we extend these wave dark matter ($psi$DM) predictions to the newly discovered class of Ultra Diffuse Galaxies (UDG) that resemble dwarf spheroidal galaxies but with more extended stellar profiles. Currently the best studied example, DF44, has a uniform velocity dispersion of $simeq 33$km/s, extending to at least 3 kpc, that we show is reproduced by our $psi$DM simulations with a soliton radius of $simeq 0.5$ kpc. In the $psi$DM context, we show the relatively flat dispersion profile of DF44 lies between massive galaxies with compact dense solitons, as may be present in the Milky Way on a scale of 100pc and lower mass galaxies where the velocity dispersion declines centrally within a wide, low density soliton, like Antlia II, of radius 3 kpc.
We use the textsc{Romulus25} cosmological simulation volume to identify the largest-ever simulated sample of {it field} ultra-diffuse galaxies (UDGs). At $z=0$, we find that isolated UDGs have average star formation rates, colors, and virial masses for their stellar masses and environment. UDGs have moderately elevated HI masses, being 70% (300%) more HI-rich than typical isolated dwarf galaxies at luminosities brighter (fainter) than M$_mathrm{B}$=-14. However, UDGs are consistent with the general isolated dwarf galaxy population and make up $sim$20% of all field galaxies with 10$^7$<M$_star$/M$_odot$<10$^{9}$. The HI masses, effective radii, and overall appearances of our UDGs are consistent with existing observations of field UDGs, but we predict that many isolated UDGs have been missed by current surveys. Despite their isolation at $z=0$, the UDGs in our sample are the products of major mergers. Mergers are no more common in UDG than non-UDG progenitors, but mergers that create UDGs tend to happen earlier - almost never occurring after $z=1$, produce a temporary boost in spin, and cause star formation to be redistributed to the outskirts of galaxies, resulting in lower central star formation rates. The centers of the galaxies fade as their central stellar populations age, but their global star formation rates are maintained through bursts of star formation at larger radii, producing steeper negative g-r color gradients. This formation channel is unique relative to other proposals for UDG formation in isolated galaxies, demonstrating that UDGs can potentially be formed through multiple mechanisms.
We address the origin of Ultra-Diffuse Galaxies (UDGs), which have stellar masses typical of dwarf galaxies but effective radii of Milky Way-sized objects. Their formation mechanism, and whether they are failed $rm L_{star}$ galaxies or diffuse dwarfs, are challenging issues. Using zoom-in cosmological simulations from the NIHAO project, we show that UDG analogues form naturally in medium-mass haloes due to episodes of gas outflows associated with star formation. The simulated UDGs live in isolated haloes of masses $10^{10-11}rm M_{odot}$, have stellar masses of $10^{7-8.5}rm M_{odot}$, effective radii larger than 1 kpc and dark matter cores. They show a broad range of colors, an average Sersic index of 0.83, a typical distribution of halo spin and concentration, and a non-negligible HI gas mass of $10^{7-9}rm M_{odot}$, which correlates with the extent of the galaxy. Gas availability is crucial to the internal processes that form UDGs: feedback driven gas outflows, and subsequent dark matter and stellar expansion, are the key to reproduce faint, yet unusually extended, galaxies. This scenario implies that UDGs represent a dwarf population of low surface brightness galaxies and should exist in the field. The largest isolated UDGs should contain more HI gas than less extended dwarfs of similar $rm M_{star}$.
We present an analysis of archival {it HST/ACS} imaging in the F475W ($g_{475}$), F606W ($V_{606}$) and F814W ($I_{814}$) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5$sigma$ completeness limit of the imaging ($I_{814}=$27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of $27pm5$ and a $V$-band specific frequency, $S_N=28pm5$. Based on comparisons to the GC systems of Local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter dominated dwarf galaxy with virial mass $sim0.9times10^{10}$~msun and a dark-to-stellar mass ratio, $M_{vir} / M_{ star}sim 1000$. Based on the stellar mass-growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky Way-like system, but is more similar to quenched Large Magellanic Cloud-like systems. We find that the mean color of GC population, $g_{475}-I_{814}$ = $0.91pm0.05$ mag, coincides with the peak of the color distribution of intracluster GCs and are also similar to those of the blue GCs in the outer regions of massive galaxies. We suggest that both the intracluster GC population in Coma and the blue-peak in the GC populations of massive galaxies may be fed - at least in part - by the disrupted equivalents of systems such as DF17.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا