We analyze algebraic structure of a relativistic semi-classical Wigner function of particles with spin 1/2 and show that it consistently includes information about the spin density matrix both in two-dimensional spin and four-dimensional spinor spaces. This result is subsequently used to explore various forms of equilibrium functions that differ by specific incorporation of spin chemical potential. We argue that a scalar spin chemical potential should be momentum dependent, while its tensor form may be a function of space-time coordinates only. This allows for the use of the tensor form in local thermodynamic relations. We furthermore show how scalar and tensor forms can be linked to each other.