In the ideal quantum Zeno effect, repeated quantum projective measurements can freeze the coherent dynamics of a quantum system. However, in the weak quantum Zeno regime, measurement back-actions can allow the sensing of semi-classical field fluctuations. In this regard, we theoretically show how to combine the controlled manipulation of a quantum two-level system, used as a probe, with a sequence of projective measurements to have direct access to the noise correlation function. We experimentally test the effectiveness of the proposed noise sensing method on a properly engineered Bose-Einstein condensate of $^{87}Rb$ atoms realized on an atom chip. We believe that our quantum Zeno-based approach can open a new path towards novel quantum sensing devices.