In this work it is reported a vertical electrolyte transistor (VET) whose structure is based on stacked layers as described below: bottom contact (source or drain) - channel - permeable intermediate electrode (drain or source) - ion gel (electrolyte gate dielectric) - gate top contact. This VET depicts versatility to work as Electrolyte-Gated Vertical Organic Field Effect Transistor (Electrolyte-Gated VOFET) or Vertical Organic Electrochemical Transistor (VOECT) as never reported before. The distinction of these operation modes is regarding to the transistor transconductance that occurs due to induced charge carriers or ionic current, respectively. Both modes of operation show that this VET is able to work at very low voltage range and drive a high current density. These observed features make VETs a good candidate for applications in iontronic devices, bio-sensors and/or very low power optoelectronic circuits.