Towards a better understanding of the structure of diamanoids and diamanoid/graphene hybrids


Abstract in English

Hot-filament process was recently employed to convert, totally or partially, few-layer graphene (FLG) with Bernal stacking into crystalline sp$^3$-C sheets at low pressure. Those materials constitute new synthetic carbon nanoforms. The result reported earlier relies on Raman spectroscopy and Fourier transform infrared microscopy. As soon as the number of graphene layers in the starting FLG is higher than 2-3, the sp$^2$-C to sp$^3$-C conversion tends to be partial only. We hereby report new evidences confirming the sp$^2$-C to sp$^3$-C conversion from electron diffraction at low energy,Raman spectroscopy and Density Functional Theory (DFT) calculations. Partial sp$^2$-C to sp$^3$-C conversion generates couples of twisted, superimposed coherent domains (TCD), supposedly because of stress relaxation, which are evidenced by electron diffraction and Raman spectroscopy. TCDs come with the occurrence of a twisted bilayer graphene feature located at the interface between the upper diamanoid domain and the non-converted graphenic domain underneath, as evidenced by a specific Raman signature consistent with the literature. DFT calculations show that the up-to-now poorly understood Raman T peak originates from a sp$^2$-C-sp$^3$-C mixt layer located between a highly hydrogenated sp$^3$-C surface layer and an underneath graphene layer.

Download