High-precision nonlocal temporal correlation identification of entangled photon pairs for quantum clock synchronization


Abstract in English

High-precision nonlocal temporal correlation identification in the entangled photon pairs is critical to measure the time offset between remote independent time scales for many quantum information applications. The first nonlocal correlation identification was reported in 2009, which extracts the time offset via the algorithm of iterative fast Fourier transformations (FFTs) and their inverse. The least identification resolution is restricted by the peak identification threshold of the algorithm, and thus the time offset calculation precision is limited. In this paper, an improvement for the identification is presented both in the resolution and precision via a modified algorithm of direct cross correlation extraction. A flexible resolution down to 1 ps is realized, which is only dependent on the Least Significant Bit (LSB) resolution of the time-tagging device. The attainable precision is shown mainly determined by the inherent timing jitter of the single photon detectors, the acquired pair rate and acquisition time, and a sub picosecond precision (0.72 ps) has been achieved at an acquisition time of 4.5 s. This high-precision nonlocal measurement realization provides a solid foundation for the field applications of entanglement-based quantum clock synchronization, ranging and communications.

Download