Do you want to publish a course? Click here

Categorical Perspective on Quantization of Poisson Algebra

111   0   0.0 ( 0 )
 Added by Jumpei Gohara
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a generalization of quantization as a categorical way. For a fixed Poisson algebra quantization categories are defined as subcategories of R-module category with the structure of classical limits. We construct the generalized quantization categories including matrix regularization, strict deformation quantization, prequantization, and Poisson enveloping algebra, respectively. It is shown that the categories of strict deformation quantization, prequantization, and matrix regularization with some conditions are categorical equivalence. On the other hand, the categories of Poisson enveloping algebra is not equivalent to the other categories.

rate research

Read More

384 - Nima Moshayedi 2020
These are lecture notes for the course Poisson geometry and deformation quantization given by the author during the fall semester 2020 at the University of Zurich. The first chapter is an introduction to differential geometry, where we cover manifolds, tensor fields, integration on manifolds, Stokes theorem, de Rhams theorem and Frobenius theorem. The second chapter covers the most important notions of symplectic geometry such as Lagrangian submanifolds, Weinsteins tubular neighborhood theorem, Hamiltonian mechanics, moment maps and symplectic reduction. The third chapter gives an introduction to Poisson geometry where we also cover Courant structures, Dirac structures, the local splitting theorem, symplectic foliations and Poisson maps. The fourth chapter is about deformation quantization where we cover the Moyal product, $L_infty$-algebras, Kontsevichs formality theorem, Kontsevichs star product construction through graphs, the globalization approach to Kontsevichs star product and the operadic approach to formality. The fifth chapter is about the quantum field theoretic approach to Kontsevichs deformation quantization where we cover functional integral methods, the Moyal product as a path integral quantization, the Faddeev-Popov and BRST method for gauge theories, infinite-dimensional extensions, the Poisson sigma model, the construction of Kontsevichs star product through a perturbative expansion of the functional integral quantization for the Poisson sigma model for affine Poisson structures and the general construction.
We construct a dynamical quantization for contact manifolds in terms of a flat connection acting on a Hilbert tractor bundle. We show that this contact quantization, which is independent of the choice of contact form, can be obtained by quantizing the Reeb dynamics of an ambient strict contact manifold equivariantly with respect to an R+-action. The contact quantization further determines a certain contact tractor connection whose parallel sections determine a distinguished choice of Reeb dynamics and their quantization. This relationship relies on tractor constructions from parabolic geometries and mirrors the tight relationship between Einstein metrics and conformal geometries. Finally, we construct in detail the dynamical quantization of the unique tight contact structure on the 3-sphere, where the Holstein-Primakoff transformation makes a surprising appearance.
In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclassical path integral is defined as a formal power series with coefficients being Feynman diagrams. We also argue that in a similar way one can obtain irreducible semiclassical representations of Kontsevichs star product.
We give a detailed explicit computation of weights of Kontsevich graphs which arise from connection and curvature terms within the globalization picture for the special case of symplectic manifolds. We will show how the weights for the curvature graphs can be explicitly expressed in terms of the hypergeometric function as well as by a much simpler formula combining it with the explicit expression for the weights of its underlined connection graphs. Moreover, we consider the case of a cotangent bundle, which will simplify the curvature expression significantly.
141 - Nima Moshayedi 2020
These notes give an introduction to the quantization procedure called geometric quantization. It gives a definition of the mathematical background for its understanding and introductions to classical and quantum mechanics, to differentiable manifolds, symplectic manifolds and the geometry of line bundles and connections. Moreover, these notes are endowed with several exercises and examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا