No Arabic abstract
Nodal semimetals (e.g. Dirac, Weyl and nodal-line semimetals, graphene, etc.) and systems of pinned particles with power-law interactions (trapped ultracold ions, nitrogen defects in diamonds, spins in solids, etc.) are presently at the centre of attention of large communities of researchers working in condensed-matter and atomic, molecular and optical physics. Although seemingly unrelated, both classes of systems are abundant with novel fundamental thermodynamic and transport phenomena. In this paper, we demonstrate that low-energy field theories of quasiparticles in semimetals may be mapped exactly onto those of pinned particles with excitations which exhibit power-law hopping. The duality between the two classes of systems, which we establish, allows one to describe the transport and thermodynamics of each class of systems using the results established for the other class. In particular, using the duality mapping, we establish the existence of a novel class of disorder-driven transitions in systems with the power-law hopping $propto1/r^gamma$ of excitations with $d/2<gamma<d$, different from the conventional Anderson-localisation transition. Non-Anderson disorder-driven transitions have been studied broadly for nodal semimetals, but have been unknown, to our knowledge, for systems with long-range hopping (interactions) with $gamma<d$.
Systems with the power-law quasiparticle dispersion $epsilon_{bf k}propto k^alpha$ exhibit non-Anderson disorder-driven transitions in dimensions $d>2alpha$, as exemplified by Weyl semimetals, 1D and 2D arrays of ultracold ions with long-range interactions, quantum kicked rotors and semiconductor models in high dimensions. We study the wavefunction structure in such systems and demonstrate that at these transitions they exhibit fractal behaviour with an infinite set of multifractal exponents. The multifractality persists even when the wavefunction localisation is forbidden by symmetry or topology and occurs as a result of elastic scattering between all momentum states in the band on length scales shorter than the mean free path. We calculate explicitly the multifractal spectra in semiconductors and Weyl semimetals using one-loop and two-loop renormalisation-group approaches slightly above the marginal dimension $d=2alpha$.
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, $1/r^a$. For randomly spaced particles, these models present an effective peculiar disorder that leads to surprising localization properties. We show that in one-dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law localized for any value of $a>0$. Moreover, we show that our model is an example of a new universality class of models with power-law hopping, characterized by a duality between systems with long-range hops ($a<1$) and short-range hops ($a>1$) in which the wave function amplitude falls off algebraically with the same power $gamma$ from the localization center.
Internodal dynamics of quasiparticles in Weyl semimetals manifest themselves in hydrodynamic, transport and thermodynamic phenomena and are essential for potential valleytronic applications of these systems. In an external magnetic field, coherent quasiparticle tunnelling between the nodes modifies the quasiparticle dispersion and, in particular, opens gaps in the dispersion of quasiparticles at the zeroth Landau level. We study magnetotransport in a Weyl semimetal taking into account mechanisms of quasiparticle scattering both affected by such gaps and independent of them. We compute the longitudal resistivity of a disordered Weyl semimetal with two nodes in a strong magnetic field microscopically and demonstrate that in a broad range of magnetic fields it has a strong angular dependence $rho(eta)propto C_1+C_2 cos^2eta$, where $eta$ is the angle between the field and the separation between the nodes in momentum space. The first term is determined by the coherent internodal tunnelling and is important only at angles $eta$ close to $pi/2$. This contribution depends exponentially on the magnetic field, $propto expleft(-B_0/Bright)$. The second term is weakly dependent on the magnetic field for realistic concentrations of the impurities in a broad interval of fields.
Amorphous solids or glasses are known to exhibit stretched-exponential decay over broad time intervals in several of their macroscopic observables: intermediate scattering function, dielectric relaxation modulus, time-elastic modulus etc. This behaviour is prominent especially near the glass transition. In this Letter we show, on the example of dielectric relaxation, that stretched-exponential relaxation is intimately related to the peculiar lattice dynamics of glasses. By reformulating the Lorentz model of dielectric matter in a more general form, we express the dielectric response as a function of the vibrational density of states (DOS) for a random assembly of spherical particles interacting harmonically with their nearest-neighbours. Surprisingly we find that near the glass transition for this system (which coincides with the Maxwell rigidity transition), the dielectric relaxation is perfectly consistent with stretched-exponential behaviour with Kohlrausch exponents $0.56 < beta < 0.65$, which is the range where exponents are measured in most experimental systems. Crucially, the root cause of stretched-exponential relaxation can be traced back to soft modes (boson-peak) in the DOS.
Charge and thermal conductivities are the most important parameters of carbon nanomaterials as candidates for future electronics. In this paper we address the effects of Anderson type disorder in long semiconductor carbon nanotubes (CNTs) to electron charge conductivity and lattice thermal conductivity using the atomistic Green function approach. The electron and phonon transmissions are analyzed as a function of the length of the disordered nanostructures. The thermal conductance as a function of temperature is calculated for different lengths. Analysis of the transmission probabilities as a function of length of the disordered device shows that both electrons and phonons with different energies display different transport regimes, i.e. quasi-ballistic, diffusive and localization regimes coexist. In the light of the results we discuss heating of the semiconductor device in electronic applications.