Symmetry of constrained minimizers of the Cahn-Hilliard energy on the torus


Abstract in English

We establish sufficient conditions for a function on the torus to be equal to its Steiner symmetrization and apply the result to volume-constrained minimizers of the Cahn-Hilliard energy. We also show how two-point rearrangements can be used to establish symmetry for the Cahn-Hilliard model. In two dimensions, the Bonnesen inequality can then be applied to quantitatively estimate the sphericity of superlevel sets.

Download