Do you want to publish a course? Click here

Symmetry of constrained minimizers of the Cahn-Hilliard energy on the torus

124   0   0.0 ( 0 )
 Added by Alfred Wagner
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We establish sufficient conditions for a function on the torus to be equal to its Steiner symmetrization and apply the result to volume-constrained minimizers of the Cahn-Hilliard energy. We also show how two-point rearrangements can be used to establish symmetry for the Cahn-Hilliard model. In two dimensions, the Bonnesen inequality can then be applied to quantitatively estimate the sphericity of superlevel sets.



rate research

Read More

The phase separation of an isothermal incompressible binary fluid in a porous medium can be described by the so-called Brinkman equation coupled with a convective Cahn-Hilliard (CH) equation. The former governs the average fluid velocity $mathbf{u}$, while the latter rules evolution of $varphi$, the difference of the (relative) concentrations of the two phases. The two equations are known as the Cahn-Hilliard-Brinkman (CHB) system. In particular, the Brinkman equation is a Stokes-like equation with a forcing term (Korteweg force) which is proportional to $mu ablavarphi$, where $mu$ is the chemical potential. When the viscosity vanishes, then the system becomes the Cahn-Hilliard-Hele-Shaw (CHHS) system. Both systems have been studied from the theoretical and the numerical viewpoints. However, theoretical results on the CHHS system are still rather incomplete. For instance, uniqueness of weak solutions is unknown even in 2D. Here we replace the usual CH equation with its physically more relevant nonlocal version. This choice allows us to prove more about the corresponding nonlocal CHHS system. More precisely, we first study well-posedness for the CHB system, endowed with no-slip and no-flux boundary conditions. Then, existence of a weak solution to the CHHS system is obtained as a limit of solutions to the CHB system. Stronger assumptions on the initial datum allow us to prove uniqueness for the CHHS system. Further regularity properties are obtained by assuming additional, though reasonable, assumptions on the interaction kernel. By exploiting these properties, we provide an estimate for the difference between the solution to the CHB system and the one to the CHHS system with respect to viscosity.
We consider a diffuse interface model for phase separation of an isothermal incompressible binary fluid in a Brinkman porous medium. The coupled system consists of a convective Cahn-Hilliard equation for the phase field $phi$, i.e., the difference of the (relative) concentrations of the two phases, coupled with a modified Darcy equation proposed by H.C. Brinkman in 1947 for the fluid velocity $mathbf{u}$. This equation incorporates a diffuse interface surface force proportional to $phi abla mu$, where $mu$ is the so-called chemical potential. We analyze the well-posedness of the resulting Cahn-Hilliard-Brinkman (CHB) system for $(phi,mathbf{u})$. Then we establish the existence of a global attractor and the convergence of a given (weak) solution to a single equilibrium via {L}ojasiewicz-Simon inequality. Furthermore, we study the behavior of the solutions as the viscosity goes to zero, that is, when the CHB system approaches the Cahn-Hilliard-Hele-Shaw (CHHS) system. We first prove the existence of a weak solution to the CHHS system as limit of CHB solutions. Then, in dimension two, we estimate the difference of the solutions to CHB and CHHS systems in terms of the viscosity constant appearing in CHB.
The Cahn-Hilliard energy landscape on the torus is explored in the critical regime of large system size and mean value close to $-1$. Existence and properties of a droplet-shaped local energy minimizer are established. A standard mountain pass argument leads to the existence of a saddle point whose energy is equal to the energy barrier, for which a quantitative bound is deduced. In addition, finer properties of the local minimizer and appropriately defined constrained minimizers are deduced. The proofs employ the $Gamma$-limit (identified in a previous work), quantitative isoperimetric inequalities, variational arguments, and Steiner symmetrization.
P. Galenko et al. proposed a modified Cahn-Hilliard equation to model rapid spinodal decomposition in non-equilibrium phase separation processes. This equation contains an inertial term which causes the loss of any regularizing effect on the solutions. Here we consider an initial and boundary value problem for this equation in a two-dimensional bounded domain. We prove a number of results related to well-posedness and large time behavior of solutions. In particular, we analyze the existence of bounded absorbing sets in two different phase spaces and, correspondingly, we establish the existence of the global attractor. We also demonstrate the existence of an exponential attractor.
We give a detailed study of the infinite-energy solutions of the Cahn-Hilliard equation in the 3D cylindrical domains in uniformly local phase space. In particular, we establish the well-posedness and dissipativity for the case of regular potentials of arbitrary polynomial growth as well as for the case of sufficiently strong singular potentials. For these cases, we prove the further regularity of solutions and the existence of a global attractor. For the cases where we have failed to prove the uniqueness (e.g., for the logarithmic potentials), we establish the existence of the trajectory attractor and study its properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا