Do you want to publish a course? Click here

All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe

111   0   0.0 ( 0 )
 Added by Julie McEnery
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe class mission concept that will provide essential contributions to multimessenger astrophysics in the late 2020s and beyond. AMEGO combines high sensitivity in the 200 keV to 10 GeV energy range with a wide field of view, good spectral resolution, and polarization sensitivity. Therefore, AMEGO is key in the study of multimessenger astrophysical objects that have unique signatures in the gamma-ray regime, such as neutron star mergers, supernovae, and flaring active galactic nuclei. The order-of-magnitude improvement compared to previous MeV missions also enables discoveries of a wide range of phenomena whose energy output peaks in the relatively unexplored medium-energy gamma-ray band.



rate research

Read More

All-Sky-ASTROGAM is a gamma-ray observatory operating in a broad energy range, 100 keV to a few hundred MeV, recently proposed as the Fast (F) mission of the European Space Agency for a launch in 2028 to an L2 orbit. The scientific payload is composed of a unique gamma-ray imaging monitor for astrophysical transients, with very large field of view (almost 4$pi$ sr) and optimal sensitivity to detect bright and intermediate flux sources (gamma-ray bursts, active galactic nuclei, X-ray binaries, supernovae and novae) at different timescales ranging from seconds to months. The mission will operate in a maturing gravitational wave and multi-messenger epoch, opening up new and exciting synergies.
106 - Henrike Fleischhack 2021
Recent detections of gravitational wave signals and neutrinos from gamma-ray sources have ushered in the era of multi-messenger astronomy, while highlighting the importance of gamma-ray observations for this emerging field. AMEGO-X, the All-sky Medium Energy Gamma-Ray Observatory eXplorer, is an MeV gamma-ray instrument that will survey the sky in the energy range from hundreds of keV to one GeV with unprecedented sensitivity. AMEGO-X will detect gamma-ray photons both via Compton interactions and pair production processes, bridging the sensitivity gap between hard X-rays and high-energy gamma rays. AMEGO-X will provide important contributions to multi-messenger science and time-domain gamma-ray astronomy, studying e.g. high-redshift blazars, which are probable sources of astrophysical neutrinos, and gamma-ray bursts. I will present an overview of the instrument and science program.
A sensitive survey of the MeV gamma-ray sky is needed to understand important astrophysical problems such as gamma-ray bursts in the early universe, progenitors of Type Ia supernovae, and the nature of dark matter. However, the study has not progressed remarkably since the limited survey by COMPTEL onboard CGRO in the 1990s. Tanimori et al. have developed a Compton camera that tracks the trajectory of each recoil electron in addition to the information obtained by the conventional Compton cameras, leading to superior imaging. This Electron Tracking Compton Camera (ETCC) facilitates accurate reconstruction of the incoming direction of each MeV photon from a wide sky at ~degree angular resolution and with minimized particle background using trajectory information. The latest ETCC model, SMILE-2+, made successful astronomical observations during a day balloon flight in 2018 April and detected diffuse continuum and 511 keV annihilation line emission from the Galactic Center region at a high significance in ~2.5 hours. We believe that MeV observations from space with upgraded ETCCs will dramatically improve our knowledge of the MeV universe. We advocate for a space-based all-sky survey mission with multiple ETCCs onboard and detail its expected benefits.
The scientific potential of a wide field-of-view, and very-high duty cycle, ground-based gamma-ray detector has been demonstrated by the current generation of instruments, such as HAWC and ARGO, and will be further extended in the Northern Hemisphere by LHAASO. Nevertheless, no such instrument exists in the Southern Hemisphere yet, where a great potential lies uncovered for the mapping of Galactic large scale emission as well as providing access to the full sky for transient and variable multi-wavelength and multi-messenger phenomena. Access to the Galactic Centre and complementarity with the CTA-South are other key motivations for such a gamma-ray observatory in the South. There is also significant potential for cosmic ray studies, including investigation of cosmic-ray anisotropy. In this contribution I will present the motivations and the concept of the future Southern Wide-Field Gamma-ray Observatory (SWGO), now formally established as an international Collaboration and currently in R&D phase. I will also outline its scientific objectives.
The HAWC collaboration has recently completed the construction of a gamma-ray observatory at an altitude of 4100 meters on the slope of the Sierra Negra volcano in the state of Puebla, Mexico. In order to achieve an optimal angular resolution, energy reconstruction, and cosmic-ray background suppression for the air showers observed by HAWC, it is crucial to obtain good timing and charge calibrations of the photosensors in the detector. The HAWC calibration is based on a laser system which is able to deliver short light pulses to all the tanks in the array. The light intensity can range over 7 orders of magnitude, broad enough to cover all the dynamic range of the PMT readout electronics. In this contribution we will present the HAWC calibration system, together with the methods used to calibrate the detector.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا