No Arabic abstract
The phenomenon of residential segregation was captured by Schellings famous segregation model where two types of agents are placed on a grid and an agent is content with her location if the fraction of her neighbors which have the same type as her is at least $tau$, for some $0<tau<1$. Discontent agents simply swap their location with a randomly chosen other discontent agent or jump to a random empty cell. We analyze a generalized game-theoretic model of Schelling segregation which allows more than two agent types and more general underlying graphs modeling the residential area. For this we show that both aspects heavily influence the dynamic properties and the tractability of finding an optimal placement. We map the boundary of when improving response dynamics (IRD), i.e., the natural approach for finding equilibrium states, are guaranteed to converge. For this we prove several sharp threshold results where guaranteed IRD convergence suddenly turns into the strongest possible non-convergence result: a violation of weak acyclicity. In particular, we show such threshold results also for Schellings original model, which is in contrast to the standard assumption in many empirical papers. Furthermore, we show that in case of convergence, IRD find an equilibrium in $mathcal{O}(m)$ steps, where $m$ is the number of edges in the underlying graph and show that this bound is met in empirical simulations starting from random initial agent placements.
Urban segregation of different communities, like blacks and whites in the USA, has been simulated by Ising-like models since Schelling 1971. This research was accompanied by a scientific segregation, with sociologists and physicists ignoring each other until 2000. We review recent progress and also present some new two-temperature multi-cultural simulations.
It is known that there are uncoupled learning heuristics leading to Nash equilibrium in all finite games. Why should players use such learning heuristics and where could they come from? We show that there is no uncoupled learning heuristic leading to Nash equilibrium in all finite games that a player has an incentive to adopt, that would be evolutionary stable or that could learn itself. Rather, a player has an incentive to strategically teach such a learning opponent in order secure at least the Stackelberg leader payoff. The impossibility result remains intact when restricted to the classes of generic games, two-player games, potential games, games with strategic complements or 2x2 games, in which learning is known to be nice. More generally, it also applies to uncoupled learning heuristics leading to correlated equilibria, rationalizable outcomes, iterated admissible outcomes, or minimal curb sets. A possibility result restricted to strategically trivial games fails if some generic games outside this class are considered as well.
Supply chains are the backbone of the global economy. Disruptions to them can be costly. Centrally managed supply chains invest in ensuring their resilience. Decentralized supply chains, however, must rely upon the self-interest of their individual components to maintain the resilience of the entire chain. We examine the incentives that independent self-interested agents have in forming a resilient supply chain network in the face of production disruptions and competition. In our model, competing suppliers are subject to yield uncertainty (they deliver less than ordered) and congestion (lead time uncertainty or, soft supply caps). Competing retailers must decide which suppliers to link to based on both price and reliability. In the presence of yield uncertainty only, the resulting supply chain networks are sparse. Retailers concentrate their links on a single supplier, counter to the idea that they should mitigate yield uncertainty by diversifying their supply base. This happens because retailers benefit from supply variance. It suggests that competition will amplify output uncertainty. When congestion is included as well, the resulting networks are denser and resemble the bipartite expander graphs that have been proposed in the supply chain literature, thereby, providing the first example of endogenous formation of resilient supply chain networks, without resilience being explicitly encoded in payoffs. Finally, we show that a suppliers investments in improved yield can make it worse off. This happens because high production output saturates the market, which, in turn lowers prices and profits for participants.
Strategic network formation arises where agents receive benefit from connections to other agents, but also incur costs for forming links. We consider a new network formation game that incorporates an adversarial attack, as well as immunization against attack. An agents benefit is the expected size of her connected component post-attack, and agents may also choose to immunize themselves from attack at some additional cost. Our framework is a stylized model of settings where reachability rather than centrality is the primary concern and vertices vulnerable to attacks may reduce risk via costly measures. In the reachability benefit model without attack or immunization, the set of equilibria is the empty graph and any tree. The introduction of attack and immunization changes the game dramatically; new equilibrium topologies emerge, some more sparse and some more dense than trees. We show that, under a mild assumption on the adversary, every equilibrium network with $n$ agents contains at most $2n-4$ edges for $ngeq 4$. So despite permitting topologies denser than trees, the amount of overbuilding is limited. We also show that attack and immunization dont significantly erode social welfare: every non-trivial equilibrium with respect to several adversaries has welfare at least as that of any equilibrium in the attack-free model. We complement our theory with simulations demonstrating fast convergence of a new bounded rationality dynamic which generalizes linkstable best response but is considerably more powerful in our game. The simulations further elucidate the wide variety of asymmetric equilibria and demonstrate topological consequences of the dynamics e.g. heavy-tailed degree distributions. Finally, we report on a behavioral experiment on our game with over 100 participants, where despite the complexity of the game, the resulting network was surprisingly close to equilibrium.
How does supply uncertainty affect the structure of supply chain networks? To answer this question we consider a setting where retailers and suppliers must establish a costly relationship with each other prior to engaging in trade. Suppliers, with uncertain yield, announce wholesale prices, while retailers must decide which suppliers to link to based on their wholesale prices. Subsequently, retailers compete with each other in Cournot fashion to sell the acquired supply to consumers. We find that in equilibrium retailers concentrate their links among too few suppliers, i.e., there is insufficient diversification of the supply base. We find that either reduction of supply variance or increase of mean supply, increases a suppliers profit. However, these two ways of improving service have qualitatively different effects on welfare: improvement of the expected supply by a supplier makes everyone better off, whereas improvement of supply variance lowers consumer surplus.