Do you want to publish a course? Click here

Dynamics of quasiperiodically driven spin systems

214   0   0.0 ( 0 )
 Added by Sayak Ray
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the stroboscopic dynamics of a spin-$S$ object subjected to $delta$-function kicking in the transverse magnetic field which is generated following the Fibonacci sequence. The corresponding classical Hamiltonian map is constructed in the large spin limit, $S rightarrow infty$. Upon evolving such a map for large kicking strength and time period, the phase space appears to be chaotic; interestingly, however, the geodesic distance increases linearly with the stroboscopic time implying that the Lyapunov exponent is zero. We derive the Sutherland invariant for the underlying $SO(3)$ matrix governing the dynamics of classical spin variables and study the orbits for weak kicking strength. For the quantum dynamics, we observe that although the phase coherence of a state is retained throughout the time evolution, the fluctuations in the mean values of the spin operators exhibit fractality which is also present in the Floquet eigenstates. Interestingly, the presence of an interaction with another spin results in an ergodic dynamics leading to infinite temperature thermalization.



rate research

Read More

The theoretical treatment of quasi-periodically driven quantum systems is complicated by the inapplicability of the Floquet theorem, which requires strict periodicity. In this work we consider a quantum system driven by a bi-harmonic driving and examine its asymptotic long-time limit, the limit in which features distinguishing systems with periodic and quasi-periodic driving occur. Also, in the classical case this limit is known to exhibit universal scaling, independent of the system details, with the systems reponse under quasi-periodic driving being described in terms of nearby periodically driven system results. We introduce a theoretical framework appropriate for the treatment of the quasi-periodically driven quantum system in the long-time limit, and derive an expression, based on Floquet states for a periodically driven system approximating the different steps of the time evolution, for the asymptotic scaling of relevant quantities for the system at hand. These expressions are tested numerically, finding excellent agreement for the finite-time average velocity in a prototypical quantum ratchet consisting of a space-symmetric potential and a time-asymmetric oscillating force.
We show that macroscopic nonintegrable lattices of spins 1/2, which are often considered to be chaotic, do not exhibit the basic property of classical chaotic systems, namely, exponential sensitivity to small perturbations. We compare chaotic lattices of classical spins and nonintegrable lattices of spins 1/2 in terms of their magnetization responses to imperfect reversal of spin dynamics known as Loschmidt echo. In the classical case, magnetization exhibits exponential sensitivity to small perturbations of Loschmidt echoes, which is characterized by twice the value of the largest Lyapunov exponent of the system. In the case of spins 1/2, magnetization is only power-law sensitive to small perturbations. Our findings imply that it is impossible to define Lyapunov exponents for lattices of spins 1/2 even in the macroscopic limit. At the same time, the above absence of exponential sensitivity to small perturbations is an encouraging news for the efforts to create quantum simulators. The power-law sensitivity of spin 1/2 lattices to small perturbations is predicted to be measurable in nuclear magnetic resonance experiments.
Recent years have seen an increasing interest in quantum chaos and related aspects of spatially extended systems, such as spin chains. However, the results are strongly system dependent, generic approaches suggest the presence of many-body localization while analytical calculations for certain system classes, here referred to as the ``self-dual case, prove adherence to universal (chaotic) spectral behavior. We address these issues studying the level statistics in the vicinity of the latter case, thereby revealing transitions to many-body localization as well as the appearance of several non-standard random-matrix universality classes.
Quantum chaos refers to signatures of classical chaos found in the quantum domain. Recently, it has become common to equate the exponential behavior of out-of-time order correlators (OTOCs) with quantum chaos. The quantum-classical correspondence between the OTOC exponential growth and chaos in the classical limit has indeed been corroborated theoretically for some systems and there are several projects to do the same experimentally. The Dicke model, in particular, which has a regular and a chaotic regime, is currently under intense investigation by experiments with trapped ions. We show, however, that for experimentally accessible parameters, OTOCs can grow exponentially also when the Dicke model is in the regular regime. The same holds for the Lipkin-Meshkov-Glick model, which is integrable and also experimentally realizable. The exponential behavior in these cases are due to unstable stationary points, not to chaos.
In this paper we study phase transitions for weakly interacting multiagent systems. By investigating the linear response of a system composed of a finite number of agents, we are able to probe the emergence in the thermodynamic limit of a singular behaviour of the susceptibility. We find clear evidence of the loss of analyticity due to a pole crossing the real axis of frequencies. Such behaviour has a degree of universality, as it does not depend on either the applied forcing nor on the considered observable. We present results relevant for both equilibrium and nonequilibrium phase transitions by studying the Desai-Zwanzig and Bonilla-Casado-Morillo models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا