Do you want to publish a course? Click here

Signatures of Tidal Disruption in Ultra-Faint Dwarf Galaxies: A Combined HST, Gaia, and MMT/Hectochelle Study of Leo V

212   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ultra-faint dwarf galaxy Leo V has shown both photometric overdensities and kinematic members at large radii, along with a tentative kinematic gradient, suggesting that it may have undergone a close encounter with the Milky Way. We investigate these signs of disruption through a combination of i) high-precision photometry obtained with the Hubble Space Telescope (HST), ii) two epochs of stellar spectra obtained with the Hectochelle Spectrograph on the MMT, and iii) measurements from the Gaia mission. Using the HST data, we examine one of the reported stream-like overdensities at large radii, and conclude that it is not a true stellar stream, but instead a clump of foreground stars and background galaxies. Our spectroscopic analysis shows that one known member star is likely a binary, and challenges the membership status of three others, including two distant candidates that had formerly provided evidence for overall stellar mass loss. We also find evidence that the proposed kinematic gradient across Leo V might be due to small number statistics. We update the systemic proper motion of Leo V, finding $(mu_alpha cosdelta, mu_delta)= (0.009pm0.560$, $-0.777pm0.314)$ mas yr$^{-1}$, which is consistent with its reported orbit that did not put Leo V at risk of being disturbed by the Milky Way. These findings remove most of the observational clues that suggested Leo V was disrupting, however, we also find new plausible member stars, two of which are located >5 half-light radii from the main body. These stars require further investigation. Therefore, the nature of Leo V still remains an open question.



rate research

Read More

125 - X. Hernandez 2016
Dwarf spheroidal galaxies are the smallest known stellar systems where under Newtonian interpretations, a significant amount of dark matter is required to explain observed kinematics. In fact, they are in this sense the most heavily dark matter dominated objects known. That, plus the increasingly small sizes of the newly discovered ultra faint dwarfs, puts these systems in the regime where dynamical friction on individual stars starts to become relevant. We calculate the dynamical friction timescales for pressure supported isotropic spherical dark matter dominated stellar systems, yielding $tau_{DF} =0.93 (r_{h}/10 pc)^{2} (sigma/ kms^{-1}) Gyr$, { where $r_{h}$ is the half-light radius}. For a stellar velocity dispersion value of $3 km/s$, as typical for the smallest of the recently detected ultra faint dwarf spheroidals, dynamical friction timescales becomes smaller than the $10 Gyr$ typical of the stellar ages for these systems, for $r_{h}<19 pc$. Thus, this becomes a theoretical lower limit below which dark matter dominated stellar systems become unstable to dynamical friction. We present a comparison with structural parameters of the smallest ultra faint dwarf spheroidals known, showing that these are already close to the stability limit derived, any future detection of yet smaller such systems would be inconsistent with a particle dark matter hypothesis.
We search for RR Lyrae stars in 27 nearby ($<100$ kpc) ultra-faint dwarf satellite galaxies using the Gaia DR2 catalog of RR Lyrae stars. Based on proper motions, magnitudes and location on the sky, we associate 47 Gaia RR Lyrae stars to 14 different satellites. Distances based on RR Lyrae stars are provided for those galaxies. We have identified RR Lyrae stars for the first time in the Tucana II dwarf galaxy, and find additional members in Ursa Major II, Coma Berenices, Hydrus I, Bootes I and Bootes III. In addition we have identified candidate extra-tidal RR Lyrae stars in six galaxies which suggest they may be undergoing tidal disruption. We found 10 galaxies have no RR Lyrae stars neither in Gaia nor in the literature. However, given the known completeness of Gaia DR2 we cannot conclude these galaxies indeed lack variable stars of this type.
We present mean absolute proper motion measurements for seven ultra-faint dwarf galaxies orbiting the Milky Way, namely Bo{o}tes III, Carina II, Grus II, Reticulum II, Sagittarius II, Segue 2 and Tucana IV. For four of these dwarfs our proper motion estimate is the first ever provided. The adopted astrometric data come from the second data release of the Gaia mission. We determine the mean proper motion for each galaxy starting from an initial guess of likely members, based either on radial velocity measurements or using stars on the Horizontal Branch identified in the Gaia ($G_{rm BP}$-$G_{rm RP}$,$G$) colour-magnitude diagram in the field of view towards the UFD. We then refine their membership iteratively using both astrometry and photometry. We take into account the full covariance matrix among the astrometric parameters when deriving the mean proper motions for these systems. Our procedure provides mean proper motions with typical uncertainties of $sim0.1$ mas/yr, even for galaxies without prior spectroscopic information. In the case of Segue 2 we find that using radial velocity members only leads to biased results, presumably because of the small number of stars with measured radial velocities. Our procedure allows to maximize the number of member stars per galaxy regardless of the existence of prior spectroscopic information, and can therefore be applied on any faint or distant stellar system within reach of Gaia.
447 - R. R. Munoz 2011
The discovery of Ultra-Faint Dwarf (UFD) galaxies in the halo of the Milky Way extends the faint end of the galaxy luminosity function to a few hundred solar luminosities. This extremely low luminosity regime poses a significant challenge for the photometric characterization of these systems. We present a suite of simulations aimed at understanding how different observational choices related to the properties of a low luminosity system impact our ability to determine its true structural parameters such as half-light radius and central surface brightness. We focus on estimating half-light radii (on which mass estimates depend linearly) and find that these numbers can have up to 100% uncertainties when relatively shallow photometric surveys, such as SDSS, are used. Our simulations suggest that to recover structural parameters within 10% or better of their true values: (a) the ratio of the field-of-view to the half-light radius of the satellite must be greater than three, (b) the total number of stars, including background objects should be larger than 1000, and (c) the central to background stellar density ratio must be higher than 20. If one or more of these criteria are not met, the accuracy of the resulting structural parameters can be significantly compromised. In the context of future surveys such as LSST, the latter condition will be closely tied to our ability to remove unresolved background galaxies. Assessing the reliability of measured structural parameters will become increasingly critical as the next generation of deep wide-field surveys detects UFDs beyond the reach of current spectroscopic limits.
We present a large homogeneous set of stellar parameters and abundances across a broad range of metallicities, involving $13$ classical dwarf spheroidal (dSph) and ultra-faint dSph (UFD) galaxies. In total this study includes $380$ stars in Fornax, Sagittarius, Sculptor, Sextans, Carina, Ursa Minor, Draco, Reticulum II, Bootes I, Ursa Major II, Leo I, Segue I, and Triangulum II. This sample represents the largest, homogeneous, high-resolution study of dSph galaxies to date. With our homogeneously derived catalog, we are able to search for similar and deviating trends across different galaxies. We investigate the mass dependence of the individual systems on the production of $alpha$-elements, but also try to shed light on the long-standing puzzle of the dominant production site of r-process elements. We use data from the Keck observatory archive and the ESO reduced archive to reanalyze stars from these $13$ dSph galaxies. We automatize the step of obtaining stellar parameters, but run a full spectrum synthesis to derive all abundances except for iron. The homogenized set of abundances yielded the unique possibility to derive a relation between the onset of type Ia supernovae and the stellar mass of the galaxy. Furthermore, we derived a formula to estimate the evolution of $alpha$-elements. Placing all abundances consistently on the same scale is crucial to answer questions about the chemical history of galaxies. By homogeneously analysing Ba and Eu in the 13 systems, we have traced the onset of the s-process and found it to increase with metallicity as a function of the galaxys stellar mass. Moreover, the r-process material correlates with the $alpha$-elements indicating some co-production of these, which in turn would point towards rare core-collapse supernovae rather than binary neutron star mergers as host for the r-process at low [Fe/H] in the investigated dSph systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا