Modulated crystals and quasicrystals can simultaneously be described as modulated quasicrystals, a class of point sets introduced by de Bruijn in 1987. With appropriate modulation functions, modulated quasicrystals themselves constitute a substantial subclass of strongly almost periodic point measures. We re-analyse these structures using methods from modern mathematical diffraction theory, thereby providing a coherent view over that class. Similarly to de Bruijns analysis, we find stability with respect to almost periodic modulations.