No Arabic abstract
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with dual tree-depth d and largest entry D are solvable in time g(d,D)poly(n) for some function g. However, the dual tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth, and thus does not reflect its geometric structure. We prove that the minimum dual tree-depth of a row-equivalent matrix is equal to the branch-depth of the matroid defined by the columns of the matrix. We design a fixed parameter algorithm for computing branch-depth of matroids represented over a finite field and a fixed parameter algorithm for computing a row-equivalent matrix with minimum dual tree-depth. Finally, we use these results to obtain an algorithm for integer programming running in time g(d*,D)poly(n) where d* is the branch-depth of the constraint matrix; the branch-depth cannot be replaced by the more permissive notion of branch-width.
In this paper, we develop a simple and fast online algorithm for solving a class of binary integer linear programs (LPs) arisen in general resource allocation problem. The algorithm requires only one single pass through the input data and is free of doing any matrix inversion. It can be viewed as both an approximate algorithm for solving binary integer LPs and a fast algorithm for solving online LP problems. The algorithm is inspired by an equivalent form of the dual problem of the relaxed LP and it essentially performs (one-pass) projected stochastic subgradient descent in the dual space. We analyze the algorithm in two different models, stochastic input and random permutation, with minimal technical assumptions on the input data. The algorithm achieves $Oleft(m sqrt{n}right)$ expected regret under the stochastic input model and $Oleft((m+log n)sqrt{n}right)$ expected regret under the random permutation model, and it achieves $O(m sqrt{n})$ expected constraint violation under both models, where $n$ is the number of decision variables and $m$ is the number of constraints. The algorithm enjoys the same performance guarantee when generalized to a multi-dimensional LP setting which covers a wider range of applications. In addition, we employ the notion of permutational Rademacher complexity and derive regret bounds for two earlier online LP algorithms for comparison. Both algorithms improve the regret bound with a factor of $sqrt{m}$ by paying more computational cost. Furthermore, we demonstrate how to convert the possibly infeasible solution to a feasible one through a randomized procedure. Numerical experiments illustrate the general applicability and effectiveness of the algorithms.
For a graph $G= (V,E)$, a double Roman dominating function (DRDF) is a function $f : V to {0,1,2,3}$ having the property that if $f (v) = 0$, then vertex $v$ must have at least two neighbors assigned $2$ under $f$ or {at least} one neighbor $u$ with $f (u) = 3$, and if $f (v) = 1$, then vertex $v$ must have at least one neighbor $u$ with $f (u) ge 2$. In this paper, we consider the double Roman domination problem, which is an optimization problem of finding the DRDF $f$ such that $sum_{vin V} f (v)$ is minimum. We propose {five integer linear programming (ILP) formulations and one mixed integer linear programming formulation with polynomial number of constraints for this problem. Some additional valid inequalities and bounds are also proposed for some of these formulations.} Further, we prove that {the first four models indeed solve the double Roman domination problem, and the last two models} are equivalent to the others regardless of the variable relaxation or usage of a smaller number of constraints and variables. Additionally, we use one ILP formulation to give an $H(2(Delta+1))$-approximation algorithm. All proposed formulations and approximation algorithm are evaluated on randomly generated graphs to compare the performance.
The Variable Block Row (VBR) format is an influential blocked sparse matrix format designed for matrices with shared sparsity structure between adjacent rows and columns. VBR groups adjacent rows and columns, storing the resulting blocks that contain nonzeros in a dense format. This reduces the memory footprint and enables optimizations such as register blocking and instruction-level parallelism. Existing approaches use heuristics to determine which rows and columns should be grouped together. We show that finding the optimal grouping of rows and columns for VBR is NP-hard under several reasonable cost models. In light of this finding, we propose a 1-dimensional variant of VBR, called 1D-VBR, which achieves better performance than VBR by only grouping rows. We describe detailed cost models for runtime and memory consumption. Then, we describe a linear time dynamic programming solution for optimally grouping the rows for 1D-VBR format. We extend our algorithm to produce a heuristic VBR partitioner which alternates between optimally partitioning rows and columns, assuming the columns or rows to be fixed, respectively. Our alternating heuristic produces VBR matrices with the smallest memory footprint of any partitioner we tested.
The NP-hard Multiple Hitting Set problem is finding a minimum-cardinality set intersecting each of the sets in a given input collection a given number of times. Generalizing a well-known data reduction algorithm due to Weihe, we show a problem kernel for Multiple Hitting Set parameterized by the Dilworth number, a graph parameter introduced by Foldes and Hammer in 1978 yet seemingly so far unexplored in the context of parameterized complexity theory. Using matrix multiplication, we speed up the algorithm to quadratic sequential time and logarithmic parallel time. We experimentally evaluate our algorithms. By implementing our algorithm on GPUs, we show the feasability of realizing kernelization algorithms on SIMD (Single Instruction, Multiple Date) architectures.
Semidefinite programming (SDP) is a central topic in mathematical optimization with extensive studies on its efficient solvers. In this paper, we present a proof-of-principle sublinear-time algorithm for solving SDPs with low-rank constraints; specifically, given an SDP with $m$ constraint matrices, each of dimension $n$ and rank $r$, our algorithm can compute any entry and efficient descriptions of the spectral decomposition of the solution matrix. The algorithm runs in time $O(mcdotmathrm{poly}(log n,r,1/varepsilon))$ given access to a sampling-based low-overhead data structure for the constraint matrices, where $varepsilon$ is the precision of the solution. In addition, we apply our algorithm to a quantum state learning task as an application. Technically, our approach aligns with 1) SDP solvers based on the matrix multiplicative weight (MMW) framework by Arora and Kale [TOC 12]; 2) sampling-based dequantizing framework pioneered by Tang [STOC 19]. In order to compute the matrix exponential required in the MMW framework, we introduce two new techniques that may be of independent interest: $bullet$ Weighted sampling: assuming sampling access to each individual constraint matrix $A_{1},ldots,A_{tau}$, we propose a procedure that gives a good approximation of $A=A_{1}+cdots+A_{tau}$. $bullet$ Symmetric approximation: we propose a sampling procedure that gives the emph{spectral decomposition} of a low-rank Hermitian matrix $A$. To the best of our knowledge, this is the first sampling-based algorithm for spectral decomposition, as previous works only give singular values and vectors.