Do you want to publish a course? Click here

Dynamics of Entanglement Wedge Cross Section from Conformal Field Theories

119   0   0.0 ( 0 )
 Added by Kotaro Tamaoka
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive dynamics of the entanglement wedge cross section directly from the two-dimensional holographic CFTs with a local operator quench. This derivation is based on the reflected entropy, a correlation measure for mixed states. We further compare these results with the mutual information and ones for RCFTs. Our results directly suggest the classical correlation also plays an important role in the subregion/subregion duality even for dynamical setup. Besides a local operator quench, we study the reflected entropy in a heavy state and provide improved bulk interpretation. We checked the above results also hold for the odd entanglement entropy, which is another measure for mixed states related to the entanglement wedge cross section.



rate research

Read More

We derive dynamics of the entanglement wedge cross section from the reflected entropy for local operator quench states in the holographic CFT. By comparing between the reflected entropy and the mutual information in this dynamical setup, we argue that (1) the reflected entropy can diagnose a new perspective of the chaotic nature for given mixed states and (2) it can also characterize classical correlations in the subregion/subregion duality. Moreover, we point out that we must improve the bulk interpretation of a heavy state even in the case of well-studied entanglement entropy. Finally, we show that we can derive the same results from the odd entanglement entropy. The present paper is an extended version of our earlier report arXiv:1907.06646 and includes many new results: non-perturbative quantum correction to the reflected/odd entropy, detailed analysis in both CFT and bulk sides, many technical aspects of replica trick for reflected entropy which turn out to be important for general setup, and explicit forms of multi-point semi-classical conformal blocks under consideration.
We study the mixed state entanglement properties in two holographic axion models by examining the behavior of the entanglement wedge minimum cross section (EWCS), and comparing it with the holographic entanglement entropy (HEE) and mutual information (MI). We find that the behavior of HEE, MI and EWCS with Hawking temperature is monotonic, while the behavior with the axion parameter $k$ is more rich, which depends on the size of the configuration and the values of the other two parameters. Interestingly, the EWCS monotonically increases with the coupling constant $kappa$ between the axion field and the Maxwell field, while HEE and MI can be non-monotonic. It suggests that the EWCS, as a mixed state entanglement measure, captures distinct degrees of freedom from the HEE and MI indeed. We also provide analytical understandings for most of the numerical results.
We explore a conformal field theoretic interpretation of the holographic entanglement of purification, which is defined as the minimal area of entanglement wedge cross section. We argue that in AdS3/CFT2, the holographic entanglement of purification agrees with the entanglement entropy for a purified state, obtained from a special Weyl transformation, called path-integral optimizations. By definition, this special purified state has the minimal path-integral complexity. We confirm this claim in several examples.
127 - Cunwei Fan , Gabriele La Nave , 2019
Holographic entanglement entropy and the first law of thermodynamics are believed to decode the gravity theory in the bulk. In particular, assuming the Ryu-Takayanagi (RT)cite{ryu-takayanagi} formula holds for ball-shaped regions on the boundary around CFT vacuum states impliescite{Nonlinear-Faulkner} a bulk gravity theory equivalent to Einstein gravity through second-order perturbations. In this paper, we show that the same assumptions can also give rise to second-order Lovelock gravity. Specifically, we generalize the procedure in cite{Nonlinear-Faulkner} to show that the arguments there also hold for Lovelock gravity by proving through second-order perturbation theory, the entropy calculated using the Wald formulacite{Wald_noether} in Lovelock also obeys an area law (at least up to second order). Since the equations for second-order perturbations of Lovelock gravity are different in general from the second-order perturbation of the Einstein-Hilbert action, our work shows that the holographic area law cannot determine a unique bulk theory even for second-order perturbations assuming only RT on ball-shaped regions. It is anticipated that RT on all subregions is expected to encode the full non-linear Einstein equations on asymptotically AdS spacetimes.
We study the entanglement wedge cross-section (EWCS) in holographic Aether gravity theory, a gravity theory with Lorentz symmetry breaking meanwhile keeping the general covariance intact. We find that only a limited parameter space is allowed to obtain a black brane with positive Hawking temperature. Subject to these allowed parameter regions, we find that the EWCS could exhibit non-monotonic behaviors with system parameters. Meanwhile, the holographic entanglement entropy (HEE), and the corresponding mutual information (MI), can only exhibit monotonic behaviors. These phenomena suggest that the EWCS could capture much more rich content of the entanglement than that of the HEE and the MI. The role of the Lorentz violation in determining the behaviors of quantum information-related quantities is also analyzed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا