Do you want to publish a course? Click here

Estimating the angular power spectrum of the gravitational-wave background in the presence of shot noise

103   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

There has been much recent interest in studying anisotropies in the astrophysical gravitational-wave (GW) background, as these could provide us with interesting new information about galaxy clustering and large-scale structure. However, this information is obscured by shot noise, caused by the finite number of GW sources that contribute to the background at any given time. We develop a new method for estimating the angular spectrum of anisotropies, based on the principle of combining statistically-independent data segments. We show that this gives an unbiased estimate of the true, astrophysical spectrum, removing the offset due to shot noise power, and that in the limit of many data segments, it is the most efficient (i.e. lowest-variance) estimator possible.



rate research

Read More

We present the first predictions for the angular power spectrum of the astrophysical gravitational wave background constituted of the radiation emitted by all resolved and unresolved astrophysical sources. Its shape and amplitude depend on both the astrophysical properties on galactic scales and on cosmological properties. We show that the angular power spectrum behaves as $C_{ell}propto 1/{ell}$ on large scales and that relative fluctuations of the signal are of order 30% at 100 Hz. We also present the correlations of the astrophysical gravitational wave background with weak-lensing and galaxy distribution. These numerical results pave the way to the study of a new observable at the crossroad between general relativity, astrophysics and cosmology.
We calculate the noise induced in the anisotropies of the astrophysical gravitational-wave background by finite sampling of both the galaxy distribution and the compact binary coalescence event rate. This shot noise leads to a scale-invariant bias term in the angular power spectrum $C_ell$, for which we derive a simple analytical expression. We find that this bias dominates over the true cosmological power spectrum in any reasonable observing scenario, and that only with very long observing times and removal of a large number of foreground sources can the true power spectrum be recovered.
The spatial and temporal discreteness of gravitational wave sources leads to shot noise that may, in some regimes, swamp any attempts at measuring the anisotropy of the gravitational wave background. Cross-correlating a gravitational wave background map with a sufficiently dense galaxy survey can alleviate this issue, and potentially recover some of the underlying properties of the gravitational wave background. We quantify the shot noise level and we explicitly show that cross-correlating the gravitational wave background and a galaxy catalog improves the chances of a first detection of the background anisotropy with a gravitational wave observatory operating in the frequency range (10Hz,100Hz), given sufficient sensitivity.
In the literature different approaches have been proposed to compute the anisotropies of the astrophysical gravitational wave background. The different expressions derived, although starting from our work Cusin, Pitrou, Uzan, Phys.Rev.D96, 103019 (2017) [1], seem to differ. This article compares the various theoretical expressions proposed so far and provides a separate derivation based on a Boltzmann approach. We show that all the theoretical formula in the literature are equivalent and boil down to the one of Ref. [1] when a proper matching of terms and integration by parts are performed. The difference between the various predictions presented for anisotropies in a cosmological context can only lie in the astrophysical modeling of sources, and neither in the theory nor in the cosmological description of the large scale structures. Finally we comment on the gauge invariance of expressions.
We use population inference to explore the impact that uncertainties in the distribution of binary black holes (BBH) have on the astrophysical gravitational-wave background (AGWB). Our results show that the AGWB monopole is sensitive to the nature of the BBH population (particularly the local merger rate), while the anisotropic $C_ell$ spectrum is only modified to within a few percent, at a level which is insignificant compared to other sources of uncertainty (such as cosmic variance). This is very promising news for future observational studies of the AGWB, as it shows that (i) the monopole can be used as a new probe of the population of compact objects throughout cosmic history, complementary to direct observations by LIGO and Virgo and (ii) we are able to make surprisingly robust predictions for the $C_ell$ spectrum, even with only very approximate knowledge of the black hole population. As a result, the AGWB anisotropies have enormous potential as a new probe of the large-scale structure of the Universe, and of late-Universe cosmology in general.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا