Do you want to publish a course? Click here

Nature of the magnetic moment of cobalt in ordered FeCo alloy

69   0   0.0 ( 0 )
 Added by Arsenii Gerasimov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnets are typically classified into Stoner and Heisenberg type, depending on the itinerant or localized nature of the constituent magnetic moments. In this work, we investigate theoretically the behaviour of the magnetic moments of iron and cobalt in their B2-ordered alloy. The results based on local spin density approximation (LSDA) for the density functional theory (DFT) suggest that the Co magnetic moment strongly depends on the directions of the surrounding magnetic moments, which usually indicates the Stoner-type mechanism of magnetism. This is consistent with the disordered local moment (DLM) picture of the paramagnetic state, where the magnetic moment of cobalt gets substantially suppressed. We argue that this is due to the lack of strong on-site electron correlations, which we take into account by employing a combination of DFT and dynamical mean-field theory (DMFT). Within LDA+DMFT, we find a substantial quasiparticle mass renormalization and a non Fermi-liquid behaviour of Fe-$3d$ orbitals. The resulting spectral functions are in very good agreement with measured spin-resolved photoemission spectra. Our results suggest that local correlations play an essential role in stabilizing a robust local moment on Co in the absence of magnetic order at high temperatures.



rate research

Read More

An inelastic neutron scattering study of the lattice dynamics of the martensite phase of the ferromagnetic shape memory alloy, Ni2MnGa, reveals the presence of well-defined phasons associated with the charge density wave (CDW) resulting from Fermi surface (FS) nesting. The velocity and the temperature dependence of the phason are measured as well as the anomalous [110]-TA2 phonon.
Iron oxide is one of the most important components in Earths mantle. Recent discovery of the stable presence of Fe5O6 at Earths mantle environment stimulates significant interests in the understanding of this new category of iron oxides. In this paper, we report the electronic structure and magnetic properties of Fe5O6 calculated by the density functional theory plus dynamic mean field theory (DFT+DMFT) approach. Our calculations indicate that Fe5O6 is a conductor at the ambient pressure with dominant Fe-3d density of states at the Fermi level. The magnetic moments of iron atoms at three non-equivalent crystallographic sites in Fe5O6 collapse at significantly different rate under pressure. Such site-selective collapse of magnetic moments originates from the shifting of energy levels and the consequent charge transfer among the Fe-3d orbits when Fe5O6 is being compressed. Our simulations suggest that there could be high conductivity and volume contraction in Fe5O6 at high pressure, which may induce anomalous features in seismic velocity, energy exchange, and mass distribution at the deep interior of Earth.
Cobalt nitride (Co-N) thin films prepared using a reactive magnetron sputtering process by varying the relative nitrogen gas flow (pn) are studied in this work. As pn~increases, Co(N), tcn, Co$_3$N and CoN phases are formed. An incremental increase in pn, after emergence of tcn~phase at pn=10p, results in a continuous expansion in the lattice constant ($a$) of tcn. For pn=30p, $a$ maximizes and becomes comparable to its theoretical value. An expansion in $a$ of tcn, results in an enhancement of magnetic moment, to the extent that it becomes even larger than pure Co. Though such higher (than pure metal) magnetic moment for Fe$_4$N thin films have been theoretically predicted and evidenced experimentally, higher (than pure Co) magnetic moment are evidenced in this work and explained in terms of large-volume high-moment model for tetra metal nitrides.
The ferromagnetic (FM) nature of Nd2Fe14B has been investigated with muon spin rotation and relaxation ({mu}^+SR) measurements on an aligned, sintered plate-shaped sample. A clear muon spin precession frequency (f_{FM}) corresponding to the static internal FM field at the muon site showed an order parameter-like temperature dependence and disappeared above around 582 K (~T_C). This indicated that the implanted muons are static in the Nd2Fe14B lattice even at temperatures above around 600 K. Using the predicted muon site and local spin densities predicted by DFT calculations, the ordered Nd moment (M_{Nd}) was estimated to be 3.31 {mu}_B at 5 K, when both M_{Fe} and M_{Nd} are parallel to the c-axis and M_{Fe} = 2.1 {mu}_B. Furthermore, M_R in R2Fe14B with R = Y, Ce, Pr, Sm, Gd, Tb, Dy, Ho, Er, and Tm was estimated from f_{mu} values reported in earlier {mu}+SR work, using the FM structure proposed by neutron scattering and the same muon site and local spin density as in Nd2Fe14B. Such estimations yielded M_R values consistent with those obtained by the other methods.
75 - A. Kimura , T. Kanbe , T. Xie 2003
Mn 2p soft X-ray absorption (XAS) spectroscopy excited with circularly polarized synchrotron radiation has been applied to a new class of material, c(2x2)CuMn/Cu(001) two-dimensional ordered surface alloy. A significant X-ray magnetic circular dichroism (XMCD) signal has been clearly observed at T=25K, indicating the existence of the ferromagnetic state under the external magnetic field of 1.4 Tesla. The lineshape analyses of the XAS and XMCD spectra clearly show that the Mn 3d state is rather localized and has a high spin magnetic moment due to its half-filled character.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا