A Novel User Representation Paradigm for Making Personalized Candidate Retrieval


Abstract in English

Candidate retrieval is a fundamental issue in recommendation system. Given users recommendation request, relevant candidates need to be retrieved in realtime for subsequent ranking operations. Considering that the retrieval operation is conducted over considerable items, it has to be both precise and scalable so that high-quality candidates can be acquired within tolerable latency. Unfortunately, conventional methods would trade off precision for high running efficiency, which leads to inferior retrieval quality. In contrast, those deep learning-based approaches can be highly accurate in identifying relevant items; yet, they are unsuitable for candidate retrieval due to their inherent limitation on scalability. In this work, a novel framework is proposed to address the above challenges. The underlying intuition is to rely on a well-trained ranking model for the supervision of an efficient retrieval model, such that it will unify the scalability and precision as a whole. We have implemented our conceptual framework and made comprehensive evaluation for it, where promising results are achieved against representative baselines. Our work is undergoing a anonymous review, and it will soon be released after the notification. If youre also interested in this problem, please feel free to contact us.

Download