Do you want to publish a course? Click here

Teach an all-rounder with experts in different domains

142   0   0.0 ( 0 )
 Added by Zhao You
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In many automatic speech recognition (ASR) tasks, an ideal model has to be applicable over multiple domains. In this paper, we propose to teach an all-rounder with experts in different domains. Concretely, we build a multi-domain acoustic model by applying the teacher-student training framework. First, for each domain, a teacher model (domain-dependent model) is trained by fine-tuning a multi-condition model with domain-specific subset. Then all these teacher models are used to teach one single student model simultaneously. We perform experiments on two predefined domain setups. One is domains with different speaking styles, the other is nearfield, far-field and far-field with noise. Moreover, two types of models are examined: deep feedforward sequential memory network (DFSMN) and long short term memory (LSTM). Experimental results show that the model trained with this framework outperforms not only multi-condition model but also domain-dependent model. Specially, our training method provides up to 10.4% relative character error rate improvement over baseline model (multi-condition model).



rate research

Read More

194 - Long Zhou , Jinyu Li , Eric Sun 2021
Multilingual automatic speech recognition (ASR) models have shown great promise in recent years because of the simplified model training and deployment process. Conventional methods either train a universal multilingual model without taking any language information or with a 1-hot language ID (LID) vector to guide the recognition of the target language. In practice, the user can be prompted to pre-select several languages he/she can speak. The multilingual model without LID cannot well utilize the language information set by the user while the multilingual model with LID can only handle one pre-selected language. In this paper, we propose a novel configurable multilingual model (CMM) which is trained only once but can be configured as different models based on users choices by extracting language-specific modules together with a universal model from the trained CMM. Particularly, a single CMM can be deployed to any user scenario where the users can pre-select any combination of languages. Trained with 75K hours of transcribed anonymized Microsoft multilingual data and evaluated with 10-language test sets, the proposed CMM improves from the universal multilingual model by 26.0%, 16.9%, and 10.4% relative word error reduction when the user selects 1, 2, or 3 languages, respectively. CMM also performs significantly better on code-switching test sets.
In this paper, we propose a sub-utterance unit selection framework to remove acoustic segments in audio recordings that carry little information for acoustic scene classification (ASC). Our approach is built upon a universal set of acoustic segment units covering the overall acoustic scene space. First, those units are modeled with acoustic segment models (ASMs) used to tokenize acoustic scene utterances into sequences of acoustic segment units. Next, paralleling the idea of stop words in information retrieval, stop ASMs are automatically detected. Finally, acoustic segments associated with the stop ASMs are blocked, because of their low indexing power in retrieval of most acoustic scenes. In contrast to building scene models with whole utterances, the ASM-removed sub-utterances, i.e., acoustic utterances without stop acoustic segments, are then used as inputs to the AlexNet-L back-end for final classification. On the DCASE 2018 dataset, scene classification accuracy increases from 68%, with whole utterances, to 72.1%, with segment selection. This represents a competitive accuracy without any data augmentation, and/or ensemble strategy. Moreover, our approach compares favourably to AlexNet-L with attention.
We present a structured overview of adaptation algorithms for neural network-based speech recognition, considering both hybrid hidden Markov model / neural network systems and end-to-end neural network systems, with a focus on speaker adaptation, domain adaptation, and accent adaptation. The overview characterizes adaptation algorithms as based on embeddings, model parameter adaptation, or data augmentation. We present a meta-analysis of the performance of speech recognition adaptation algorithms, based on relative error rate reductions as reported in the literature.
Acoustic models in real-time speech recognition systems typically stack multiple unidirectional LSTM layers to process the acoustic frames over time. Performance improvements over vanilla LSTM architectures have been reported by prepending a stack of frequency-LSTM (FLSTM) layers to the time LSTM. These FLSTM layers can learn a more robust input feature to the time LSTM layers by modeling time-frequency correlations in the acoustic input signals. A drawback of FLSTM based architectures however is that they operate at a predefined, and tuned, window size and stride, referred to as view in this paper. We present a simple and efficient modification by combining the outputs of multiple FLSTM stacks with different views, into a dimensionality reduced feature representation. The proposed multi-view FLSTM architecture allows to model a wider range of time-frequency correlations compared to an FLSTM model with single view. When trained on 50K hours of English far-field speech data with CTC loss followed by sMBR sequence training, we show that the multi-view FLSTM acoustic model provides relative Word Error Rate (WER) improvements of 3-7% for different speaker and acoustic environment scenarios over an optimized single FLSTM model, while retaining a similar computational footprint.
Tacotron-based end-to-end speech synthesis has shown remarkable voice quality. However, the rendering of prosody in the synthesized speech remains to be improved, especially for long sentences, where prosodic phrasing errors can occur frequently. In this paper, we extend the Tacotron-based speech synthesis framework to explicitly model the prosodic phrase breaks. We propose a multi-task learning scheme for Tacotron training, that optimizes the system to predict both Mel spectrum and phrase breaks. To our best knowledge, this is the first implementation of multi-task learning for Tacotron based TTS with a prosodic phrasing model. Experiments show that our proposed training scheme consistently improves the voice quality for both Chinese and Mongolian systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا