Do you want to publish a course? Click here

Intrinsic anomalous Nernst effect amplified by disorder in a half-metallic semimetal

85   0   0.0 ( 0 )
 Added by Zengwei Zhu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Intrinsic anomalous Nernst effect (ANE), like its Hall counterpart, is generated by Berry curvature of electrons in solids. Little is known about its response to disorder. In contrast, the link between the amplitude of the ordinary Nernst coefficient and the mean-free-path is extensively documented. Here, by studying Co$_3$Sn$_2$S$_2$, a topological half-metallic semimetal hosting sizable and recognizable ordinary and anomalous Nernst responses, we demonstrate an anti-correlation between the amplitude of ANE and carrier mobility. We argue that the observation, paradoxically, establishes the intrinsic origin of the ANE in this system. We conclude that various intrinsic off-diagonal coefficients are set by the way the Berry curvature is averaged on a grid involving the mean-free-path, the Fermi wavelength and the de Broglie thermal length.

rate research

Read More

In metallic ferromagnets, the Berry curvature of underlying quasiparticles can cause an electric voltage perpendicular to both magnetization and an applied temperature gradient, a phenomenon called the anomalous Nernst effect (ANE). Here, we report the observation of a giant ANE in the full-Heusler ferromagnet Co$_2$MnGa, reaching $S_{yx}sim -6$ $mu$V/K at room $T$, one order of magnitude larger than the maximum value reported for a magnetic conductor. With increasing temperature, the transverse thermoelectric conductivity or Peltier coefficient $alpha_{yx}$ shows a crossover between $T$-linear and $-T log(T)$ behaviors, indicating the violation of Mott formula at high temperatures. Our numerical and analytical calculations indicate that the proximity to a quantum Lifshitz transition between type-I and type-II magnetic Weyl fermions is responsible for the observed crossover properties and an enhanced $alpha_{yx}$. The $T$ dependence of $alpha_{yx}$ in experiments and numerical calculations can be understood in terms of a quantum critical scaling function predicted by the low energy effective theory over more than a decade of temperatures. Moreover, the observation of chiral anomaly or an unsaturated positive longitudinal magnetoconductance also provide evidence for the existence of Weyl fermions in Co$_2$MnGa.
Dirac and Weyl semimetals display a host of novel properties. In Cd$_3$As$_2$, the Dirac nodes lead to a protection mechanism that strongly suppresses backscattering in zero magnetic field, resulting in ultrahigh mobility ($sim$ 10$^7$ cm$^2$ V$^{-1}$ s$^{-1}$). In applied magnetic field, an anomalous Nernst effect is predicted to arise from the Berry curvature associated with the Weyl nodes. We report observation of a large anomalous Nernst effect in Cd$_3$As$_2$. Both the anomalous Nernst signal and transport relaxation time $tau_{tr}$ begin to increase rapidly at $sim$ 50 K. This suggests a close relation between the protection mechanism and the anomalous Nernst effect. In a field, the quantum oscillations of bulk states display a beating effect, suggesting that the Dirac nodes split into Weyl states, allowing the Berry curvature to be observed as an anomalous Nernst effect.
Topological materials have recently attracted considerable attention among materials scientists as their properties are predicted to be protected against perturbations such as lattice distortion and chemical substitution. However, any experimental proof of such robustness is still lacking. In this study, we experimentally demonstrate that the topological properties of the ferromagnetic kagome compound Co3Sn2S2 are preserved upon Ni substitution. We systematically vary the Ni content in Co3Sn2S2 single crystals and study their magnetic and anomalous transport properties. For the intermediate Ni substitution, we observe a remarkable increase in the coercive field while still maintaining significant anomalous Hall conductivity. The large anomalous Hall conductivity of these compounds is intrinsic, consistent with first-principle calculations, which proves its topological origin. Our results can guide further studies on the chemical tuning of topological materials for better understanding.
Thermoelectric properties of a model Skyrmion crystal were theoretically investigated, and it was found that its large anomalous Hall conductivity, corresponding to large Chern numbers induced by its peculiar spin structure leads to a large transverse thermoelectric voltage through the anomalous Nernst effect. This implies the possibility of finding good thermoelectric materials among Skyrmion systems, and thus motivates our quests for them by means of the first-principles calculations as were employed here.
Topological materials are expected to show distinct transport signatures due to their unique band-inversion character and band-crossing points. However, the intentional modulation of such topological responses by experimentally feasible means is less explored. Here, an unusual elevation of anomalous Hall effect (AHE) is obtained in electron(Ni)-doped magnetic Weyl semimetal Co3-xNixSn2S2, showing peak values of anomalous Hall-conductivity, Hall-angle and Hall-factor at a relatively low doping level of x = 0.11. The separation of intrinsic and extrinsic contributions to total AHE using TYJ scaling model indicates that such significant enhancement is dominated by the intrinsic mechanism of electronic Berry curvature. Theoretical calculations reveal that compared with the Fermi-level shifting from electron filling, a usually overlooked effect of doping, i.e., local disorder, imposes a striking effect on broadening the bands and narrowing the inverted gap, and thus results in an elevation of the integrated Berry curvature. Our results not only realize the enhancement of AHE in a magnetic Weyl semimetal, but also provide a practical design principle to modulate the bands and transport properties in topological materials, by exploiting the disorder effect of doping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا