For a graph $H$, a graph $G$ is $H$-induced-saturated if $G$ does not contain an induced copy of $H$, but either removing an edge from $G$ or adding a non-edge to $G$ creates an induced copy of $H$. Depending on the graph $H$, an $H$-induced-saturated graph does not necessarily exist. In fact, Martin and Smith (2012) showed that $P_4$-induced-saturated graphs do not exist, where $P_k$ denotes a path on $k$ vertices. Axenovich and Csik{o}s (2019) asked the existence of $P_k$-induced-saturated graphs for $k ge 5$; it is easy to construct such graphs when $kin{2, 3}$. Recently, R{a}ty constructed a graph that is $P_6$-induced-saturated. In this paper, we show that there exists a $P_{k}$-induced-saturated graph for infinitely many values of $k$. To be precise, we find a $P_{3n}$-induced-saturated graph for every positive integer $n$. As a consequence, for each positive integer $n$, we construct infinitely many $P_{3n}$-induced-saturated graphs. We also show that the Kneser graph $K(n,2)$ is $P_6$-induced-saturated for every $nge 5$.