No Arabic abstract
Since its inception in the 1980s, ID3 has become one of the most successful and widely used algorithms for learning decision trees. However, its theoretical properties remain poorly understood. In this work, we introduce a novel metric of a decision tree algorithms performance, called mean iteration statistical consistency (MIC), which measures optimality of trees generated by ID3. As opposed to previous metrics, MIC can differentiate between different decision tree algorithms and compare their performance. We provide theoretical and empirical evidence that the TopDown variant of ID3, introduced by Kearns and Mansour (1996), has near-optimal MIC in various settings for learning read-once DNFs under product distributions. In contrast, another widely used variant of ID3 has MIC which is not near-optimal. We show that the MIC analysis predicts well the performance of these algorithms in practice. Our results present a novel view of decision tree algorithms which may lead to better and more practical guarantees for these algorithms.
In recent years, there are many attempts to understand popular heuristics. An example of such a heuristic algorithm is the ID3 algorithm for learning decision trees. This algorithm is commonly used in practice, but there are very few theoretical works studying its behavior. In this paper, we analyze the ID3 algorithm, when the target function is a $k$-Junta, a function that depends on $k$ out of $n$ variables of the input. We prove that when $k = log n$, the ID3 algorithm learns in polynomial time $k$-Juntas, in the smoothed analysis model of Kalai & Teng. That is, we show a learnability result when the observed distribution is a noisy variant of the original distribution.
Tree-based ensemble methods, as Random Forests and Gradient Boosted Trees, have been successfully used for regression in many applications and research studies. Furthermore, these methods have been extended in order to deal with uncertainty in the output variable, using for example a quantile loss in Random Forests (Meinshausen, 2006). To the best of our knowledge, no extension has been provided yet for dealing with uncertainties in the input variables, even though such uncertainties are common in practical situations. We propose here such an extension by showing how standard regression trees optimizing a quadratic loss can be adapted and learned while taking into account the uncertainties in the inputs. By doing so, one no longer assumes that an observation lies into a single region of the regression tree, but rather that it belongs to each region with a certain probability. Experiments conducted on several data sets illustrate the good behavior of the proposed extension.
With the recent success of representation learning methods, which includes deep learning as a special case, there has been considerable interest in developing representation learning techniques that can incorporate known physical constraints into the learned representation. As one example, in many applications that involve a signal propagating through physical media (e.g., optics, acoustics, fluid dynamics, etc), it is known that the dynamics of the signal must satisfy constraints imposed by the wave equation. Here we propose a matrix factorization technique that decomposes such signals into a sum of components, where each component is regularized to ensure that it satisfies wave equation constraints. Although our proposed formulation is non-convex, we prove that our model can be efficiently solved to global optimality in polynomial time. We demonstrate the benefits of our work by applications in structural health monitoring, where prior work has attempted to solve this problem using sparse dictionary learning approaches that do not come with any theoretical guarantees regarding convergence to global optimality and employ heuristics to capture desired physical constraints.
Batch policy optimization considers leveraging existing data for policy construction before interacting with an environment. Although interest in this problem has grown significantly in recent years, its theoretical foundations remain under-developed. To advance the understanding of this problem, we provide three results that characterize the limits and possibilities of batch policy optimization in the finite-armed stochastic bandit setting. First, we introduce a class of confidence-adjusted index algorithms that unifies optimistic and pessimistic principles in a common framework, which enables a general analysis. For this family, we show that any confidence-adjusted index algorithm is minimax optimal, whether it be optimistic, pessimistic or neutral. Our analysis reveals that instance-dependent optimality, commonly used to establish optimality of on-line stochastic bandit algorithms, cannot be achieved by any algorithm in the batch setting. In particular, for any algorithm that performs optimally in some environment, there exists another environment where the same algorithm suffers arbitrarily larger regret. Therefore, to establish a framework for distinguishing algorithms, we introduce a new weighted-minimax criterion that considers the inherent difficulty of optimal value prediction. We demonstrate how this criterion can be used to justify commonly used pessimistic principles for batch policy optimization.
Neural networks (NNs) have been extremely successful across many tasks in machine learning. Quantization of NN weights has become an important topic due to its impact on their energy efficiency, inference time and deployment on hardware. Although post-training quantization is well-studied, training optimal quantized NNs involves combinatorial non-convex optimization problems which appear intractable. In this work, we introduce a convex optimization strategy to train quantized NNs with polynomial activations. Our method leverages hidden convexity in two-layer neural networks from the recent literature, semidefinite lifting, and Grothendiecks identity. Surprisingly, we show that certain quantized NN problems can be solved to global optimality in polynomial-time in all relevant parameters via semidefinite relaxations. We present numerical examples to illustrate the effectiveness of our method.