Magnetization Dynamics in 1D Chains of Ferromagnetic Nanoparticles Coupled with Dipolar Interactions: Blocking Temperature


Abstract in English

There is so far no clear-cut experimental analysis that can determine whether dipole-dipole interactions enhance or reduce the blocking temperature $T_{B}$ of nanoparticle assemblies. It seems that the samples play a central role in the problem and therefore, their geometry should most likely be the key factor in this issue. Yet, in a previous work, Jonsson and Garcia-Palacios did investigate theoretically this problem in a weak-interaction limit and without the presence of an external DC field. Based on symmetry arguments they reached the conclusion that the variation of the relaxation rate is monotonous. In the presence of an external magnetic field we show that these arguments may no longer hold depending on the experimental geometry. Therefore, the aim of this paper is to evaluate the variation of $T_{B}$ for a model system consisting of a chain of ferromagnetic nanoparticles coupled with long-range dipolar interaction with two different geometries. Rather than addressing a quantitative analysis, we focus on the qualitative variation of $T_{B}$ as a function of the interparticle distance a and of the external field $h$. The two following situations are investigated: a linear chain with a longitudinal axial anisotropy in a longitudinal DC field and a linear chain with a longitudinal axial anisotropy in a transverse field.

Download