No Arabic abstract
This paper is a celebration of the frontiers of science. Goodenough, the maestro who transformed energy usage and technology through the invention of the lithium ion battery, opens the programme, reflecting on the ultimate limits of battery technology. This applied theme continues through the subsequent pieces on energy related topics (the sodium ion battery and artificial fuels, by Mansson) and the ultimate challenge for 3 dimensional printing the eventual production of life, by Atala. A passage by Alexander follows, reflecting on a related issue: How might an artificially produced human being behave? Next comes a consideration of consiousness and free will by Allen and Lidstrom. Further voices and new instruments enter as Bowen, Mauranyapin and Madsen discuss whether dynamical processes of single molecules might be observed in their native state. The exploitation of chaos in science and technology, applications of Bose Einstein condensates and a consideration of the significance of entropy follow in pieces by Reichl, Rasel and Allen, respectively. Katsnelson and Koonin then discuss the potential generalisation of thermodynamic concepts in the context of biological evolution. Entering with the music of the cosmos, Yasskin discusses whether we might be able to observe torsion in the geometry of the universe. The crescendo comes with the crisis of singularities, their nature and whether they can be resolved through quantum effects, in the composition of Coley. The climax is Krenn, Melvin and Zeilinger consideration of how computer code can be autonomously surprising and creative. In a harmonious counterpoint, Yampolskiy concludes that such code is not yet able to take responsibility for coauthoring a paper.
Einsteins genius and penetrating physical intuition led to the general theory of relativity, which incorporates gravity into the geometry of spacetime. However, the theory of general relativity leads to perspectives which go far beyond the vision of its creator. Many of these insights came to light only after Einsteins death in 1955. These developments were due to a new breed of relativists, like Penrose, Hawking and Geroch, who approached the subject with a higher degree of mathematical sophistication than earlier workers. Some of these insights were made possible because of work by Amal Kumar Raychaudhuri (AKR) who derived an equation which turned out to be a key ingredient in the singularity theorems of general relativity. This article explains AKRs work in elementary terms.
The science fiction film, Interstellar, tells the story of a team of astronauts searching a distant galaxy for habitable planets to colonize. Interstellars story draws heavily from contemporary science. The film makes reference to a range of topics, from established concepts such as fast-spinning black holes, accretion disks, tidal effects, and time dilation, to far more speculative ideas such as wormholes, time travel, additional space dimensions, and the theory of everything. The aim of this article is to decipher some of the scientific notions which support the framework of the movie.
We consider how an advanced civilization might build a radiator to send gravitational waves signals by using small black holes. Micro black holes on the scale of centimeters but with masses of asteroids to planets are manipulated with a super advanced instrumentality, possibly with very large electromagnetic fields. The machine envisioned emits gravitational waves in the GHz frequency range. If the source to receiver distance is a characteristic length in the galaxy, up to 10000 light years, the masses involved are at least planetary in magnitude. To provide the energy for this system we posit a very advanced civilization that has a Kerr black hole at its disposal and can extract energy by way of super-radiance. Background gravitational radiation sets a limit on the dimensionless amplitude that can be measured at interstellar distance using a LIGO like detector.
This comment was solicited by Physics in Canada and will appear alongside the article by Richard Mackenzie [arXiv:0807.3670] in the next issue.
The aura of mystery surrounding quantum physics makes it difficult to advance quantum technologies. Demystification requires methodological techniques that explain the basics of quantum technologies without metaphors and abstract mathematics. The article provides an example of such an explanation for the BB84 quantum key distribution protocol based on phase coding. This allows you to seamlessly get acquainted with the real cryptographic installation QRate, used at the WorldSkills competition in the competence of Quantum Technologies.