Do you want to publish a course? Click here

Extragalactic astrophysics with next-generation CMB experiments

89   0   0.0 ( 0 )
 Added by Gianfranco De Zotti
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Planck, SPT and ACT surveys have clearly demonstrated that Cosmic Microwave Background (CMB) experiments, while optimised for cosmological measurements, have made important contributions to the field of extragalactic astrophysics in the last decade. Future CMB experiments have the potential to make even greater contributions. One example is the detection of high-z galaxies with extreme gravitational amplifications. The combination of flux boosting and of stretching of the images has allowed the investigation of the structure of galaxies at z ~3 with the astounding spatial resolution of about 60 pc. Another example is the detection of proto-clusters of dusty galaxies at high z when they may not yet possess the hot intergalactic medium allowing their detection in X-rays or via the Sunyaev-Zeldovich effect. Next generation CMB experiments, like PICO, CORE, CMB-Bharat from space and Simons Observatory and CMB-S4 from the ground, will discover several thousands of strongly lensed galaxies out to z~6 or more and of galaxy proto-clusters caught in the phase when their member galaxies where forming the bulk of their {stars. They will also detect tens of thousands of local dusty galaxies and thousands of radio sources at least up to z~5. Moreover they will measure the polarized emission of thousands of radio sources and of dusty galaxies at mm/sub-mm wavelengths.



rate research

Read More

Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of reionization near $ell=1500$ in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range $300<ell<3000$ with simulated temperature data from the full Planck mission in the low and intermediate $ell$ region, $2<ell<2000$. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than $1%$ accuracy. Assuming an efficient cleaning from multi-frequency channels of most foregrounds in the temperature data, we investigate the sensitivity to the only residual secondary component, the kinematic Sunyaev-Zeldovich (kSZ) term. The CMB polarization is used to break degeneracies between primordial and secondary terms present in temperature and, in effect, to remove from the temperature data all but the residual kSZ term. We estimate a $15 sigma$ detection of the diffuse homogeneous kSZ signal from expected AdvACT temperature data at $ell>1500$, leading to a measurement of the amplitude of matter density fluctuations, $sigma_8$, at $1%$ precision. Alternatively, by exploring the reionization signal encoded in the patchy kSZ measurements, we bound the time and duration of the reionization with $sigma(z_{rm re})=1.1$ and $sigma(Delta z_{rm re})=0.2$. We find that these constraints degrade rapidly with large beam sizes, which highlights the importance of arcminute-scale resolution for future CMB surveys.
New telescopes are being built to measure the Cosmic Microwave Background (CMB) with unprecedented sensitivity, including Simons Observatory (SO), CCAT-prime, the BICEP Array, SPT-3G, and CMB Stage-4. We present observing strategies for telescopes located in Chile that are informed by the tools used to develop recent Atacama Cosmology Telescope (ACT) and Polarbear surveys. As with ACT and Polarbear, these strategies are composed of scans that sweep in azimuth at constant elevation. We explore observing strategies for both small (0.42 m) aperture telescopes (SAT) and a large (6 m) aperture telescope (LAT). We study strategies focused on small sky areas to search for inflationary gravitational waves as well as strategies spanning roughly half the low-foreground sky to constrain the effective number of relativistic species and measure the sum of neutrino masses via the gravitational lensing signal due to large scale structure. We present these strategies specifically considering the telescope hardware and science goals of the SO, located at 23 degrees South latitude, 67.8 degrees West longitude. Observations close to the Sun and the Moon can introduce additional systematics by applying additional power to the instrument through telescope sidelobes. Significant side lobe contamination in the data can occur even at tens of degrees or more from bright sources. Therefore, we present several strategies that implement Sun and Moon avoidance constraints into the telescope scheduling. Strategies for resolving conflicts between simultaneously visible fields are discussed. We focus on maximizing telescope time spent on science observations. It will also be necessary to schedule calibration measurements, however that is beyond the scope of this work. The outputs of this study are algorithms that can generate specific schedule commands for the Simons Observatory instruments.
In the next decade, new ground-based Cosmic Microwave Background (CMB) experiments such as Simons Observatory (SO), CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to Superconducting Quantum Interference Device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT (AdvACT) and POLARBEAR-2/Simons Array bolometers. Molybdenum-copper bilayer ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.
A detection of curl-type ($B$-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primordial $B$-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. BICEP Array (BA) is the Stage-3 instrument of the BK program and will comprise four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale $B$-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full BICEP Array instrument is projected to reach $sigma_r$ between 0.002 and 0.004, depending on foreground complexity and degree of removal of $B$-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.
CMB surveys provide, for free, blindly selected samples of extragalactic radio sources at much higher frequencies than traditional radio surveys. Next-generation, ground-based CMB experiments with arcmin resolution at mm wavelengths will provide samples of thousands radio sources allowing the investigation of the evolutionary properties of blazar populations, the study of the earliest and latest stages of radio activity, the discovery of rare phenomena and of new transient sources and events. Space-borne experiments will extend to sub-mm wavelengths the determinations of the SEDs of many hundreds of blazars, in temperature and in polarization, allowing us to investigate the flow and the structure of relativistic jets close to their base, and the electron acceleration mechanisms. A real breakthrough will be achieved in the caracterization of the polarization properties. The first direct counts in polarization will be obtained, enabling a solid assessment of the extra-galactic source contamination of CMB maps and allowing us to understand structure and intensity of magnetic fields, particle densities and structures of emitting regions close to the base of the jet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا