Quantum non-Gaussianity and secure quantum communication


Abstract in English

No-cloning theorem, a profound fundamental principle of quantum mechanics, also provides a crucial practical basis for secure quantum communication. The security of communication can be ultimately guaranteed if the output fidelity via communication channel is above the no-cloning bound (NCB). In quantum communications using continuous-variable (CV) systems, Gaussian states, more specifically, coherent states have been widely studied as inputs, but less is known for non-Gaussian states. We aim at exploring quantum communication covering CV states comprehensively with distinct sets of unknown states properly defined. Our main results here are (i) to establish the NCB for a broad class of quantum non-Gaussian states including Fock states, their superpositions and Schrodinger-cat states and (ii) to examine the relation between NCB and quantum non-Gaussianity (QNG). We find that NCB typically decreases with QNG. Remarkably, this does not mean that quantum non-Gaussian states are less demanding for secure communication. By extending our study to mixed-state inputs, we demonstrate that QNG specifically in terms of Wigner negativity requires more resources to achieve output fidelity above NCB in CV teleportation. The more non-Gaussian, the harder to achieve secure communication, which can have crucial implications for CV quantum communications.

Download