First results of Resistive-Plate Well (RPWELL) detector operation at 163 K


Abstract in English

We present for the first time, discharge-free operation at cryogenic conditions of a Resistive-Plate WELL (RPWELL) detector. It is a single-sided Thick Gaseous Electron Multiplier (THGEM) coupled to a readout anode via a plate of high bulk resistivity. The results of single- and double-stage RPWELL detectors operated in stable conditions in Ne/5$%$CH$_{4}$ at 163 K are summarized. The RPWELL comprised a ferric-based (Fe$^{3+}$) ceramic composite (Fe-ceramic) as the resistive plate, of volume resistivity $sim$$10^{11}$ $Omega$$cdot$cm at this temperature. Gains of $sim$$10^{4}$ and $sim$$10^{5}$ were reached with the single-stage RPWELL, with 6 keV X-rays and single UV-photons, respectively. The double-stage detector, a THGEM followed by the RPWELL, reached gains $sim$$10^{5}$ and $sim$$10^{6}$ with X-rays and single UV-photons, respectively. The results were obtained with and without a CsI photocathode on the first multiplying element. Potential applications at these cryogenic conditions are discussed.

Download