No Arabic abstract
Network reconfiguration is an effective strategy for different purposes of distribution systems (DSs), e.g., resilience enhancement. In particular, DS automation, distributed generation integration and microgrid (MG) technology development, etc., are empowering much more flexible reconfiguration and operation of the system, e.g., DSs or MGs with flexible boundaries. However, the formulation of DS reconfiguration-related optimization problems to include those new flexibilities is non-trivial, especially for the issue of topology, which has to be radial. That is, existing methods of formulating radiality constraints can cause underutilization of DS flexibilities. Thus, this work proposes a new method for radiality constraints formulation fully enabling the topological and some other related flexibilities of DSs, so that the reconfiguration-related optimization problems can have extended feasibility and enhanced optimality. Graph-theoretic supports are provided to certify its theoretical validity. As integer variables are involved, we also analyze the tightness and compactness issues. The proposed radiality constraints are specifically applied to post-disaster MG formation, which is involved in many DS resilience-oriented service restoration and/or infrastructure recovery problems. The resulting new MG formation model, which allows more flexible merge and/or separation of sub-grids, etc., establishes superiority over the models in the literature. Case studies are conducted on two test systems.
Radiality constraints are involved in both distribution system restoration and reconfiguration problems. However, a set of widely used radiality constraints, i.e., the spanning tree (ST) constraints, has its limitations which have not been well recognized. In this letter, the limitation of the ST constraints is analyzed and an effective set of constraints, referred to as the single-commodity flow constraints, is presented. Furthermore, a combined set of constraints is proposed and case studies indicate that the combined constraints can gain computational efficiency in the reconfiguration problem. Recommendations on the use of radiality constraints are also provided.
In this paper, an attack-resilient estimation algorithm is presented for linear discrete-time stochastic systems with state and input constraints. It is shown that the state estimation errors of the proposed estimation algorithm are practically exponentially stable.
We propose a framework for resilience in a networked heterogeneous multi-robot team subject to resource failures. Each robot in the team is equipped with resources that it shares with its neighbors. Additionally, each robot in the team executes a task, whose performance depends on the resources to which it has access. When a resource on a particular robot becomes unavailable (eg a camera ceases to function), the team optimally reconfigures its communication network so that the robots affected by the failure can continue their tasks. We focus on a monitoring task, where robots individually estimate the state of an exogenous process. We encode the end-to-end effect of a robots resource loss on the monitoring performance of the team by defining a new stronger notion of observability -- textit{one-hop observability}. By abstracting the impact that {low-level} individual resources have on the task performance through the notion of one-hop observability, our framework leads to the principled reconfiguration of information flow in the team to effectively replace the lost resource on one robot with information from another, as long as certain conditions are met. Network reconfiguration is converted to the problem of selecting edges to be modified in the systems communication graph after a resource failure has occurred. A controller based on finite-time convergence control barrier functions drives each robot to a spatial location that enables the communication links of the modified graph. We validate the effectiveness of our framework by deploying it on a team of differential-drive robots estimating the position of a group of quadrotors.
This paper presents a two-layer, four-level distributed control method for networked microgrid (NMG) systems, taking into account the proprietary nature of microgrid (MG) owners. The proposed control architecture consists of a MG-control layer and a NMG-control layer. In the MG layer, the primary and distrib-uted secondary control realize accurate power sharing among distributed generators (DGs) and the frequency/voltage reference following within each MG. In the NMG layer, the tertiary control enables regulation of the power flowing through the point of common coupling (PCC) of each MG in a decentralized manner. Furthermore, the distributed quaternary control restores system frequency and critical bus voltage to their nominal values and ensures accurate power sharing among MGs. A small-signal dynamic model is developed to evaluate dynamic performance of NMG systems with the proposed control method. Time-domain simulations as well as experiments on NMG test systems are performed to validate the effectiveness of the proposed method.
Repair crews (RCs) and mobile power sources (MPSs) are critical resources for distribution system (DS) outage management after a natural disaster. However, their logistics is not well investigated. We propose a resilient scheme for disaster recovery logistics to co-optimize DS restoration with dispatch of RCs and MPSs. A novel co-optimization model is formulated to route RCs and MPSs in the transportation network, schedule them in the DS, and reconfigure the DS for microgrid formation coordinately, etc. The model incorporates different timescales of DS restoration and RC/MPS dispatch, the coupling of transportation and power networks, etc. To ensure radiality of the DS with variable physical structure and MPS allocation, we also model topology constraints based on the concept of spanning forest. The model is convexified equivalently and linearized into a mixed-integer linear programming. To reduce its computation time, preprocessing methods are proposed to pre-assign a minimal set of repair tasks to depots and reduce the number of candidate nodes for MPS connection. Resilient recovery strategies thus are generated to enhance service restoration, especially by dynamic formation of microgrids that are powered by MPSs and topologized by repair actions of RCs and network reconfiguration of the DS. Case studies demonstrate the proposed methodology.