Do you want to publish a course? Click here

Optimal mechanisms with budget for user generated contents

307   0   0.0 ( 0 )
 Added by Shenke Xiao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we design gross product maximization mechanisms which incentivize users to upload high-quality contents on user-generated-content (UGC) websites. We show that, the proportional division mechanism, which is widely used in practice, can perform arbitrarily bad in the worst case. The problem can be formulated using a linear program with bounded and increasing variables. We then present an $O(nlog n)$ algorithm to find the optimal mechanism, where n is the number of players.



rate research

Read More

We introduce the problem of assigning resources to improve their utilization. The motivation comes from settings where agents have uncertainty about their own values for using a resource, and where it is in the interest of a group that resources be used and not wasted. Done in the right way, improved utilization maximizes social welfare--- balancing the utility of a high value but unreliable agent with the groups preference that resources be used. We introduce the family of contingent payment mechanisms (CP), which may charge an agent contingent on use (a penalty). A CP mechanism is parameterized by a maximum penalty, and has a dominant-strategy equilibrium. Under a set of axiomatic properties, we establish welfare-optimality for the special case CP(W), with CP instantiated for a maximum penalty equal to societal value W for utilization. CP(W) is not dominated for expected welfare by any other mechanism, and second, amongst mechanisms that always allocate the resource and have a simple indirect structure, CP(W) strictly dominates every other mechanism. The special case with no upper bound on penalty, the contingent second-price mechanism, maximizes utilization. We extend the mechanisms to assign multiple, heterogeneous resources, and present a simulation study of the welfare properties of these mechanisms.
295 - Jiarui Gan , Bo Li , Xiaowei Wu 2021
In the budget-feasible allocation problem, a set of items with varied sizes and values are to be allocated to a group of agents. Each agent has a budget constraint on the total size of items she can receive. The goal is to compute a feasible allocation that is envy-free (EF), in which the agents do not envy each other for the items they receive, nor do they envy a charity, who is endowed with all the unallocated items. Since EF allocations barely exist even without budget constraints, we are interested in the relaxed notion of envy-freeness up to one item (EF1). The computation of both exact and approximate EF1 allocations remains largely open, despite a recent effort by Wu et al. (IJCAI 2021) in showing that any budget-feasible allocation that maximizes the Nash Social Welfare (NSW) is 1/4-approximate EF1. In this paper, we move one step forward by showing that for agents with identical additive valuations, a 1/2-approximate EF1 allocation can be computed in polynomial time. For the uniform-budget and two-agent cases, we propose efficient algorithms for computing an exact EF1 allocation. We also consider the large budget setting, i.e., when the item sizes are infinitesimal compared with the agents budgets, and show that both the NSW maximizing allocation and the allocation our polynomial-time algorithm computes have an approximation close to 1 regarding EF1.
143 - Xiaowei Wu , Bo Li , Jiarui Gan 2020
The Nash social welfare (NSW) is a well-known social welfare measurement that balances individual utilities and the overall efficiency. In the context of fair allocation of indivisible goods, it has been shown by Caragiannis et al. (EC 2016 and TEAC 2019) that an allocation maximizing the NSW is envy-free up to one good (EF1). In this paper, we are interested in the fairness of the NSW in a budget-feasible allocation problem, in which each item has a cost that will be incurred to the agent it is allocated to, and each agent has a budget constraint on the total cost of items she receives. We show that a budget-feasible allocation that maximizes the NSW achieves a 1/4-approximation of EF1 and the approximation ratio is tight. The approximation ratio improves gracefully when the items have small costs compared with the agents budgets; it converges to 1/2 when the budget-cost ratio approaches infinity.
We study revenue maximization by deterministic mechanisms for the simplest case for which Myersons characterization does not hold: a single seller selling two items, with independently distributed values, to a single additive buyer. We prove that optimal mechanisms are submodular and hence monotone. Furthermore, we show that in the IID case, optimal mechanisms are symmetric. Our characterizations are surprisingly non-trivial, and we show that they fail to extend in several natural ways, e.g. for correlated distributions or more than two items. In particular, this shows that the optimality of symmetric mechanisms does not follow from the symmetry of the IID distribution.
Neural Machine Translation (NMT) has shown drastic improvement in its quality when translating clean input, such as text from the news domain. However, existing studies suggest that NMT still struggles with certain kinds of input with considerable noise, such as User-Generated Contents (UGC) on the Internet. To make better use of NMT for cross-cultural communication, one of the most promising directions is to develop a model that correctly handles these expressions. Though its importance has been recognized, it is still not clear as to what creates the great gap in performance between the translation of clean input and that of UGC. To answer the question, we present a new dataset, PheMT, for evaluating the robustness of MT systems against specific linguistic phenomena in Japanese-English translation. Our experiments with the created dataset revealed that not only our in-house models but even widely used off-the-shelf systems are greatly disturbed by the presence of certain phenomena.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا