Avocado: Photometric Classification of Astronomical Transients with Gaussian Process Augmentation


Abstract in English

Upcoming astronomical surveys such as the Large Synoptic Survey Telescope (LSST) will rely on photometric classification to identify the majority of the transients and variables that they discover. We present a set of techniques for photometric classification that can be applied even when the training set of spectroscopically-confirmed objects is heavily biased towards bright, low-redshift objects. Using Gaussian process regression to model arbitrary light curves in all bands simultaneously, we augment the training set by generating n

Download