Do you want to publish a course? Click here

Prevalent externally-driven protoplanetary disc dispersal as a function of the galactic environment

77   0   0.0 ( 0 )
 Added by Andrew Winter
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The stellar birth environment can significantly shorten protoplanetary disc (PPD) lifetimes due to the influence of stellar feedback mechanisms. The degree to which these mechanisms suppress the time and mass available for planet formation is dependent on the local far-ultraviolet (FUV) field strength, stellar density, and ISM properties. In this work, we present the first theoretical framework quantifying the distribution of PPD dispersal time-scales as a function of parameters that describe the galactic environment. We calculate the probability density function for FUV flux and stellar density in the solar neighbourhood. In agreement with previous studies, we find that external photoevaporation is the dominant environment-related factor influencing local stellar populations after the embedded phase. Applying our general prescription to the Central Molecular Zone of the Milky Way (i.e. the central ~250 pc), we predict that 90% of PPDs in the region are destroyed within 1 Myr of the dispersal of the parent molecular cloud. Even in such dense environments, we find that external photoevaporation is the dominant disc depletion mechanism over dynamical encounters between stars. PPDs around low-mass stars are particularly sensitive to FUV-induced mass loss, due to a shallower gravitational potential. For stars of mass ~1 $M_odot$, the solar neighbourhood lies at approximately the highest gas surface density for which PPD dispersal is still relatively unaffected by external FUV photons, with a median PPD dispersal timescale of ~4 Myr. We highlight the key questions to be addressed to further contextualise the significance of the local galactic environment for planet formation.



rate research

Read More

Computing the flow from externally FUV irradiated protoplanetary discs requires solving complicated and expensive photodissociation physics iteratively in conjunction with hydrodynamics. Previous studies have therefore been limited to 1D models of this process. In this paper we compare 2D-axisymmetric models of externally photoevaporating discs with their 1D analogues, finding that mass loss rates are consistent to within a factor four. The mass loss rates in 2D are higher, in part because half of the mass loss comes from the disc surface (which 1D models neglect). 1D mass loss rates used as the basis for disc viscous evolutionary calculations are hence expected to be conservative. We study the anatomy of externally driven winds including the streamline morphology, kinematic, thermal and chemical structure. A key difference between the 1D and 2D models is in the chemical abundances. For instance in the 2D models CO can be dissociated at smaller radial distances from the disc outer edge than in 1D calculations because gas is photodissociated by radiation along trajectories that are assumed infinitely optically thick in 1D models. Multidimensional models will hence be critical for predicting observable signatures of environmentally photoevaporating protoplanetary discs.
Proto-planetary disc surveys conducted with ALMA are measuring disc radii in multiple star forming regions. The disc radius is a fundamental quantity to diagnose whether discs undergo viscous spreading, discriminating between viscosity or angular momentum removal by winds as drivers of disc evolution. Observationally, however, the sub-mm continuum emission is dominated by the dust, which also drifts inwards, complicating the picture. In this paper we investigate, using theoretical models of dust grain growth and radial drift, how the radii of dusty viscous proto-planetary discs evolve with time. Despite the existence of a sharp outer edge in the dust distribution, we find that the radius enclosing most of the dust $textit{mass}$ increases with time, closely following the evolution of the gas radius. This behaviour arises because, although dust initially grows and drifts rapidly onto the star, the residual dust retained on Myr timescales is relatively well coupled to the gas. Observing the expansion of the dust disc requires using definitions based on high fractions of the disc $textit{flux}$ (e.g. 95 per cent) and very long integrations with ALMA, because the dust grains in the outer part of the disc are small and have a low sub-mm opacity. We show that existing surveys lack the sensitivity to detect viscous spreading. The disc radii they measure do not trace the mass radius or the sharp outer edge in the dust distribution, but the outer limit of where the grains have significant sub-mm opacity. We predict that these observed radii should shrink with time.
The majority of stars form in a clustered environment. This has an impact on the evolution of surrounding protoplanetary discs (PPDs) due to either photoevaporation or tidal truncation. Consequently, the development of planets depends on formation environment. Here we present the first thorough investigation of tidally induced angular momentum loss in PPDs in the distant regime, partly motivated by claims in the literature for the importance of distant encounters in disc evolution. We employ both theoretical predictions and dynamical/hydrodynamical simulations in 2D and 3D. Our theoretical analysis is based on that of Ostriker (1994) and leads us to conclude that in the limit that the closest approach distance $x_{min} gg r$, the radius of a particle ring, the fractional change in angular momentum scales as $(x_{min}/r)^{-5}$. This asymptotic limit ensures that the cumulative effect of distant encounters is minor in terms of its influence on disc evolution. The angular momentum transfer is dominated by the $m=2$ Lindblad resonance for closer encounters and by the $m=1$, $omega = 0$ Lindblad resonance at large $x_{min}/r$. We contextualise these results by comparing expected angular momentum loss for the outer edge of a PPD due to distant and close encounters. Contrary to the suggestions of previous works we do not find that distant encounters contribute significantly to angular momentum loss in PPDs. We define an upper limit for closest approach distance where interactions are significant as a function of arbitrary host to perturber mass ratio $M_2/M_1$.
We present high resolution millimeter continuum imaging of the disc surrounding the young star CI Tau, a system hosting the first hot Jupiter candidate in a protoplanetary disc system. The system has extended mm emission on which are superposed three prominent annular gaps at radii ~ 13, 39 and 100 au. We argue that these gaps are most likely to be generated by massive planets so that, including the hot Jupiter, the system contains four gas giant planets at an age of only 2 Myr. Two of the new planets are similarly located to those inferred in the famous HL Tau protoplanetary disc; in CI Tau, additional observational data enables a more complete analysis of the system properties than was possible for HL Tau. Our dust and gas dynamical modeling satisfies every available observational constraint and points to the most massive ensemble of exo-planets ever detected at this age, with its four planets spanning a factor 1000 in orbital radius.Our results show that the association between hot Jupiters and gas giants on wider orbits, observed in older stars, is apparently in place at an early evolutionary stage.
The nature and rate of (viscous) angular momentum transport in protoplanetary discs (PPDs) has important consequences for the formation process of planetary systems. While accretion rates onto the central star yield constraints on such transport in the inner regions of a PPD, empirical constraints on viscous spreading in the outer regions remain challenging to obtain. Here we demonstrate a novel method to probe the angular momentum transport at the outer edge of the disc. This method applies to PPDs that have lost a significant fraction of their mass due to thermal winds driven by UV irradiation from a neighbouring OB star. We demonstrate that this external photoevaporation can explain the observed depletion of discs in the 3-5 Myr old $sigma$ Orionis region, and use our model to make predictions motivating future empirical investigations of disc winds. For populations of intermediate-age PPDs, in viscous models we show that the mass flux outwards due to angular momentum redistribution is balanced by the mass-loss in the photoevaporative wind. A comparison between wind mass-loss and stellar accretion rates therefore offers an independent constraint on viscous models in the outer regions of PPDs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا