Do you want to publish a course? Click here

Symmetric div-quasiconvexity and the relaxation of static problems

303   0   0.0 ( 0 )
 Added by Sergio Conti
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We consider problems of static equilibrium in which the primary unknown is the stress field and the solutions maximize a complementary energy subject to equilibrium constraints. A necessary and sufficient condition for the sequential lower-semicontinuity of such functionals is symmetric ${rm div}$-quasiconvexity, a special case of Fonseca and Mullers $A$-quasiconvexity with $A = {rm div}$ acting on $R^{ntimes n}_{sym}$. We specifically consider the example of the static problem of plastic limit analysis and seek to characterize its relaxation in the non-standard case of a non-convex elastic domain. We show that the symmetric ${rm div}$-quasiconvex envelope of the elastic domain can be characterized explicitly for isotropic materials whose elastic domain depends on pressure $p$ and Mises effective shear stress $q$. The envelope then follows from a rank-$2$ hull construction in the $(p,q)$-plane. Remarkably, owing to the equilibrium constraint the relaxed elastic domain can still be strongly non-convex, which shows that convexity of the elastic domain is not a requirement for existence in plasticity.



rate research

Read More

91 - Siran Li 2019
We are concerned with the relaxation and existence theories of a general class of geometrical minimisation problems, with action integrals defined via differential forms over fibre bundles. We find natural algebraic and analytic conditions which give rise to a relaxation theory. Moreover, we propose the notion of ``Riemannian quasiconvexity for cost functions whose variables are differential forms on Riemannian manifolds, which extends the classical quasiconvexity condition in the Euclidean settings. The existence of minimisers under the Riemannian quasiconvexity condition has been established. This work may serve as a tentative generalisation of the framework developed in the recent paper: B. Dacorogna and W. Gangbo, Quasiconvexity and relaxation in optimal transportation of closed differential forms, textit{Arch. Ration. Mech. Anal.} (2019), to appear. DOI: texttt{https://doi.org/10.1007/s00205-019-01390-9}.
56 - Bogdan Raita 2018
We show that each constant rank operator $mathcal{A}$ admits an exact potential $mathbb{B}$ in frequency space. We use this fact to show that the notion of $mathcal{A}$-quasiconvexity can be tested against compactly supported fields. We also show that $mathcal{A}$-free Young measures are generated by sequences $mathbb{B}u_j$, modulo shifts by the barycentre.
Given a symmetric Riemannian manifold (M, g), we show some results of genericity for non degenerate sign changing solutions of singularly perturbed nonlinear elliptic problems with respect to the parameters: the positive number {epsilon} and the symmetric metric g. Using these results we obtain a lower bound on the number of non degenerate solutions which change sign exactly once.
We study the stationary nonhomogeneous Navier--Stokes problem in a two dimensional symmetric domain with a semi-infinite outlet (for instance, either parabo-loidal or channel-like). Under the symmetry assumptions on the domain, boundary value and external force we prove the existence of at least one weak symmetric solution without any restriction on the size of the fluxes, i.e. the fluxes of the boundary value ${bf a}$ over the inner and the outer boundaries may be arbitrarily large. Only the necessary compatibility condition (the total flux is equal to zero) has to be satisfied. Moreover, the Dirichlet integral of the solution can be finite or infinite depending on the geometry of the domain.
This paper presents the use of element-based algebraic multigrid (AMGe) hierarchies, implemented in the ParELAG (Parallel Element Agglomeration Algebraic Multigrid Upscaling and Solvers) library, to produce multilevel preconditioners and solvers for H(curl) and H(div) formulations. ParELAG constructs hierarchies of compatible nested spaces, forming an exact de Rham sequence on each level. This allows the application of hybrid smoothers on all levels and AMS (Auxiliary-space Maxwell Solver) or ADS (Auxiliary-space Divergence Solver) on the coarsest levels, obtaining complete multigrid cycles. Numerical results are presented, showing the parallel performance of the proposed methods. As a part of the exposition, this paper demonstrates some of the capabilities of ParELAG and outlines some of the components and procedures within the library.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا