Bootstrapping line defects in $mathcal{N}=2$ theories


Abstract in English

We study half-BPS line defects in $mathcal{N}=2$ superconformal theories using the bootstrap approach. We concentrate on local excitations constrained to the defect, which means the system is a $1d$ defect CFT with $mathfrak{osp}(4^*|2)$ symmetry. In order to study correlation functions we construct a suitable superspace, and then use the Casimir approach to calculate a collection of new superconformal blocks. Special emphasis is given to the displacement operator, which controls deformations orthogonal to the defect and is always present in a defect CFT. After setting up the crossing equations we proceed with a numerical and analytical bootstrap analysis. We obtain numerical bounds on the CFT data and compare them to known solutions. We also present an analytic perturbative solution to the crossing equations, and argue that this solution captures line defects in $mathcal{N}=2$ gauge theories at strong coupling.

Download