Do you want to publish a course? Click here

Spins of black holes in coalescing compact binaries

110   0   0.0 ( 0 )
 Added by K. A. Postnov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Modern astrophysical methods of determination of spins of rotating stellar-mass black hole in close binaries and of supermassive black holes in active galactic nuclei are briefly discussed. Effective spins of coalescing binary black holes derived from LIGO/Virgo gravitational wave observations are specially addressed. We consider three types of coalescing binaries: double black holes, black hole-neutron star binaries and primordial double black holes. The effective spins of coalescing astrophysical binary black holes and black holes with neutron stars are calculated for two plausible models of black hole formations from stellar core collapses (without or with additional fallback from the stellar envelope) taking into account the stellar metallicity and star formation rate evolution in the Universe. The calculated distributions do not contradict the reported LIGO/Virgo observations. The effective spins of primordial coalescing stellar-mass black holes can reach a few per cent due to accretion spin-up in the cold external medium.



rate research

Read More

112 - Bin Liu , Dong Lai 2021
Merging compact black-hole (BH) binaries are likely to exist in the nuclear star clusters around supermassive BHs (SMBHs), such as Sgr A$^ast$. They may also form in the accretion disks of active galactic nuclei. Such compact binaries can emit gravitational waves (GWs) in the low-frequency band (0.001-1 Hz) that are detectable by several planned space-borne GW observatories. We show that the orbital axis of the compact binary may experience significant variation due to the frame-dragging effect associated with the spin of the SMBH. The dynamical behavior of the orbital axis can be understood analytically as a resonance phenomenon. We show that rate of change of the binary orbital axis encodes the information on the spin of the SMBH. Therefore detecting GWs from compact binaries around SMBHs, particularly the modulation of the waveform associated with the variation of the binary orbital axis, can provide a new probe on the spins of SMBHs.
We perform a hierarchical Bayesian inference to investigate the population properties of the coalesc- ing compact binaries involving at least one neutron star (NS). With the current observation data, we can not rule out either of the Double Gaussian, Single Gaussian and Uniform NS mass distribution models, although the mass distribution of the Galactic NSs is slightly preferred by the gravitational wave (GW) observations. The mass distribution of black holes (BHs) in the neutron star-black hole (NSBH) population is found to be similar to that for the Galactic X-ray binaries. Additionally, the ratio of the merger rate densities between NSBHs and BNSs is estimated to be about 3 : 7. The spin properties of the binaries, though constrained relatively poor, play nontrivial role in reconstructing the mass distribution of NSs and BHs. We find that a perfectly aligned spin distribution can be ruled out, while a purely isotropic distribution of spin orientation is still allowed.
A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the X-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit (ISCO), whose radius depends only on the mass and spin of the black hole. In the Fe K method, which applies to both classes of black holes, one models the profile of the relativistically-broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting method, which has so far only been applied to stellar-mass black holes, one models the thermal X-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the continuum-fitting method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.
117 - A. D. Dolgov 2020
Available data on the chirp mass distribution of the coalescing black hole binaries in O1-O3 LIGO/Virgo runs are analyzed and compared statistically with the distribution calculated under the assumption that these black holes are primordial with a log-normal mass spectrum. The theoretically calculated chirp mass distribution with the inferred best acceptable mass spectrum parameters, $M_0=17 M_odot$ and $gamma=0.9$, perfectly describes the data. The value of $M_0$ very well agrees with the theoretically expected one. On the opposite, the chirp mass distribution of black hole binaries originated from massive binary star evolution requires additional model adjustments to reproduce the observed chirp mass distribution
One of the goals of gravitational-wave astronomy is simultaneous detection of gravitational-wave signals from merging compact-object binaries and the electromagnetic transients from these mergers. With the next generation of advanced ground-based gravitational wave detectors under construction, we examine the benefits of the proposed extension of the detector network to include a fourth site in Australia in addition to the network of Hanford, Livingston and Cascina sites. Using Bayesian parameter-estimation analyses of simulated gravitational-wave signals from a range of coalescing-binary locations and orientations, we study the improvement in parameter estimation. We find that an Australian detector can break degeneracies in several parameters; in particular, the localization of the source on the sky is improved by a factor of ~4, with more modest improvements in distance and binary inclination estimates. This enhanced ability to localize sources on the sky will be crucial in any search for electromagnetic counterparts to detected gravitational-wave signals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا